Patents by Inventor Shahram Moaddeb

Shahram Moaddeb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050288780
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include an anterior portion, a posterior portion and two lateral portions corresponding to intersections of the anterior portion and the posterior portion. The devices have, a first shape in a first configuration and a second shape in a second configuration and are configured to transform from the first configuration to the second configuration in response to an activation energy applied thereto.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Richard Rhee, Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20050288782
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a body member including a shape memory material, and an energy absorption enhancement material configured to absorb energy in response to an activation energy. The energy absorption enhancement material is in thermal communication with said shape memory material.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Shahram Moaddeb, Emanuel Shaoulian, Samuel Shaolian
  • Publication number: 20050288781
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a body member including a ferromagnetic shape memory material. The body member has a first size of a dimension in a first configuration and a second size of the dimension in a second configuration. The body member is configured to be implanted into a heart so as to reinforce a cardiac valve annulus in the first configuration.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Shahram Moaddeb, Emanuel Shaoulian, Samuel Shaolian
  • Publication number: 20050288779
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a shape memory material that is responsive to changes in temperature and/or exposure to a magnetic field. A material having enhanced absorption characteristics with regard to a desired heating energy may be used in order to facilitate heating and adjustment of the support device.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20050288777
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a body member including a shape memory material. The shape memory material is configured to transform from a first shape to a second shape in response to being heated. The devices also include a thermally insulative material at least partially covering the body member and a thermally conductive material extending into the thermally insulative material. The thermally conductive material is configured to communicate thermal energy to the body member.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Richard Rhee, Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Publication number: 20050288778
    Abstract: Methods and devices are provided for support of a body structure. The devices can be adjusted within the body of a patient in a minimally invasive or non-invasive manner such as by applying energy percutaneously or external to the patient's body. The energy may include, for example, acoustic energy, radio frequency energy, light energy and magnetic energy. Thus, as the body structure changes size and/or shape, the size and/or shape of the annuloplasty rings can be adjusted to provide continued reinforcement. In certain embodiments, the devices include a first body member including a first shape memory material configured to transform the annuloplasty ring from a first configuration having a first size of a dimension to a second configuration having a second size of the dimension. The second size is less than said first size in septal lateral distance.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 29, 2005
    Inventors: Emanuel Shaoulian, Shahram Moaddeb, Samuel Shaolian
  • Patent number: 6980858
    Abstract: A method and system for atrial defibrillation in a patient are provided. The method comprises introducing into the patient a catheter comprising an elongated catheter body having proximal and distal ends and at least one lumen therethrough, and a basket-shaped electrode assembly at the distal end of the catheter body. The electrode assembly has proximal and distal ends and comprises a plurality of spines connected at their proximal and distal ends, each spine comprising an elongated spine electrode along its length. The electrode assembly has an expanded arrangement wherein the spines bow radially outwardly and a collapsed arrangement wherein the spines are arranged generally along the axis of the catheter body. The method further comprises introducing the electrode assembly into the heart of the patient and applying defibrillation energy to the tissue through one or more of the elongated electrodes.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: December 27, 2005
    Assignee: Biosense Webster, Inc.
    Inventors: Kristine B. Fuimaono, Shahram Moaddeb
  • Patent number: 6671561
    Abstract: A catheter having an improved electrode that minimizes irritation to the heart tissue and counters the occurrence of foreign body reactions is provided. The catheter comprises an elongated, flexible catheter body having proximal and distal ends and at least one lumen extending therethrough. At least one electrode, such as a tip electrode or ring electrode, is mounted on the distal end of the catheter body, wherein the electrode comprises a base material having an outer surface and a hydrogel layer applied over at least a portion of the outer surface of the base material. Preferably a drug or other therapeutic agent is incorporated into the hydrogel layer.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: December 30, 2003
    Assignee: Biosense Webster, Inc.
    Inventor: Shahram Moaddeb
  • Publication number: 20030125770
    Abstract: A method and system for atrial defibrillation in a patient are provided. The method comprises introducing into the patient a catheter comprising an elongated catheter body having proximal and distal ends and at least one lumen therethrough, and a basket-shaped electrode assembly at the distal end of the catheter body. The electrode assembly has proximal and distal ends and comprises a plurality of spines connected at their proximal and distal ends, each spine comprising an elongated spine electrode along its length. The electrode assembly has an expanded arrangement wherein the spines bow radially outwardly and a collapsed arrangement wherein the spines are arranged generally along the axis of the catheter body. The method further comprises introducing the electrode assembly into the heart of the patient and applying defibrillation energy to the tissue through one or more of the elongated electrodes.
    Type: Application
    Filed: December 31, 2001
    Publication date: July 3, 2003
    Inventors: Kristine B. Fuimaono, Shahram Moaddeb
  • Patent number: 6475214
    Abstract: An ablation catheter comprises an elongated, flexible catheter body having proximal and distal ends and at least one lumen extending therethrough. A tip electrode having a length of at least about 3 mm is mounted on the distal end of the catheter body. The tip electrode comprises a base material having an outer surface and a porous layer applied over at least a portion of the outer surface of the base material, the porous layer comprising metal nitride, metal oxide, metal carbide, metal carbonitride, carbon, carboxy nitride, or a combination thereof.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: November 5, 2002
    Assignee: Biosense Webster, Inc.
    Inventor: Shahram Moaddeb
  • Patent number: 6466818
    Abstract: An irrigated tip catheter comprises a catheter body, a tip section, and a porous tip electrode. The catheter body has an outer wall, proximal and distal ends, and a lumen extending therethrough. The tip section comprises a segment of flexible tubing having proximal and distal ends and at least one lumen therethrough. The proximal end of the tip section is fixedly attached to the distal end of the catheter body. The porous tip electrode is fixedly attached to the distal end of the tubing of the tip section. The tip electrode has an outer surface and comprises a body and an insert. The body comprises a porous material through which fluid can pass and has a cavity therein. The insert, which comprises a non-porous material, is contained within the cavity of the shell. The insert has at least one passage extending therethrough in fluid communication with a lumen in the tip section. An infusion tube having proximal and distal ends extends through the central lumen in the catheter body.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: October 15, 2002
    Assignee: Biosense Webster, Inc.
    Inventors: Shahram Moaddeb, Michele M. Fung, Gregory G. Brucker, Steven D. Savage
  • Patent number: 6405091
    Abstract: A passive fixation, body implantable lead assembly has a cylindrical tip electrode whose outer side surface is covered with a thin dielectric insulating layer so as to mask an active, disk-shaped electrode surface at the distal extremity of the tip electrode. The active electrode surface preferably has an area less than about 1 mm2. An MCRD, in the form of a collar, may be carried by a proximal portion of the tip electrode. Supplementing a set of main tines projecting from the distal end portion of an insulating sheath housing the lead assembly is a set of nubby auxiliary tines extending from the sheath immediately adjacent the distal extremity thereof.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: June 11, 2002
    Assignee: Pacesetter, Inc.
    Inventors: David J. Vachon, Shahram Moaddeb, Gene A. Bornzin, Kevin L. Morgan
  • Patent number: 6405078
    Abstract: A porous tip electrode for a catheter comprises a body and an insert. The body comprises a porous material through which fluid can pass and a cavity therein. The insert, which is contained therein, has proximal and distal ends and comprises a non-porous material contained within the cavity. The insert having at least one passage extending therethrough and at least blind hole extending from its proximal end.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: June 11, 2002
    Assignee: Biosense Webster, Inc.
    Inventors: Shahram Moaddeb, Michele M. Fung
  • Patent number: 6402719
    Abstract: A steerable, direct myocardial revascularization catheter comprises a catheter body, a control handle, a tip section, and a means for deflecting the tip section by manipulation of the control handle. The catheter body has an outer wall, proximal and distal ends and at least one lumen extending therethrough. The control handle is situated at the proximal end of the catheter body. The tip section comprises a flexible tubing having proximal and distal ends and at least one lumen therethrough. The proximal end of the tip section is fixedly attached to the distal end of the catheter body. The catheter also comprises an optic fiber having proximal and distal ends. The optic fiber extends through a lumen in a catheter body and tip section. The distal end of the optic fiber is substantially flush with the distal end of the tip section. The catheter further comprises an infusion tube having proximal and distal ends. The infusion tube extends through a lumen in the catheter body and tip section.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: June 11, 2002
    Assignee: Cordis Webster, Inc.
    Inventors: Dean M. Ponzi, Shahram Moaddeb
  • Patent number: 6024739
    Abstract: A method for direct myocardial revascularization by providing a catheter with a catheter body having proximal and distal ends and at least one lumen extending therethrough, a control handle at the proximal end of the catheter body, and a tip section having proximal and distal ends. The tip section is fixedly attached to the distal end of the catheter body. The catheter also comprises an electromagnetic sensor in the distal portion tip section for producing electrical signals indicative of the location of the electromagnetic sensor. The catheter further comprises at least one electrode carried by the tip section for mapping electrical activity of the heart tissue and at least one electrode lead wire electrically connected to the electrode. An optic fiber is provided within the catheter with its distal end being substantially flush with the distal end of the tip section. Manipulation of the control handle results in deflection of the tip section.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: February 15, 2000
    Assignee: Cordis Webster, Inc.
    Inventors: Dean M. Ponzi, Shahram Moaddeb
  • Patent number: 5833715
    Abstract: A pacing lead having a stylet introduced anti-inflammatory drug delivery element advanceable from the distal tip electrode. The element is preferably formed as a moldable biocompatible composite material. The element has a biocompatible matrix material which may be combined with drugs and therapeutic agents to deliver the drugs and agents by co-dissolution or diffusion to the point of either passive or active fixation. The drug delivery element may be rigid and serve to center an active fixation mechanism, preferably a helix, which penetrates the myocardium.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: November 10, 1998
    Assignee: Pacesetter, Inc.
    Inventors: David J. Vachon, Shahram Moaddeb
  • Patent number: 5755767
    Abstract: A transvenous endocardial lead comprises an elongated flexible body member encompassing an electrical conductor which has an electrode at its distal end. A stabilizer adjacent the distal electrode extends outwardly from the flexible body member by a distance no greater than approximately one-half of the shortest distance between a longitudinal axis and the outer peripheral surface for minimizing dislodgment of the distal end from an intended implanted position into the myocardial tissue of the heart and for preventing penetration of the distal end of the flexible body member into the myocardial tissue. The stabilizer may be employed in conjunction with conventional active or passive fixation members and may take a variety of forms.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: May 26, 1998
    Assignee: Pacesetter, Inc.
    Inventors: Phong D. Doan, Benedict Gomperz, Shahram Moaddeb
  • Patent number: 5490323
    Abstract: The present invention includes a body implantable lead having a multipolar proximal connector, at least a first conductor coupled to at least one stimulating electrode, a sensor for sensing at least one physiologic parameter of the body, and a second and a third conductor coupled to the sensor. The sensor is hermetically sealed in a D-shaped housing. Sensor components are mounted onto a microelectronic substrate which is advantageously placed on an inner flat portion of the D-shaped housing. End caps having sealing rings, either glass frit or metal, are used to seal the ends of the shell. A hermetic seal is easily achieved by heating the sealing material until they re-flow between the end caps and the shell. Advantageously, the sensor terminals are sized to fit snugly within a narrow bore of the end cap which is then circumferentially welded closed. The D-shaped sensor is placed on a carrier having at least two lumens.
    Type: Grant
    Filed: January 30, 1995
    Date of Patent: February 13, 1996
    Assignee: Pacesetter, Inc.
    Inventors: James R. Thacker, Alvin H. Weinberg, Shahram Moaddeb
  • Patent number: 5447533
    Abstract: A pacing lead having a stylet introduced anti-inflammatory drug delivery element advanceable from the distal tip electrode. The element is preferably formed as a moldable biocompatible composite material. The element has a biocompatible matrix material which may be combined with drugs and therapeutic agents to deliver the drugs and agents by co-dissolution or diffusion to the point of either passive or active fixation. The drug delivery element may be rigid and serve to center the active fixation element, preferably a helix, for active fixation of the lead in the myocardium.
    Type: Grant
    Filed: October 6, 1993
    Date of Patent: September 5, 1995
    Assignee: Pacesetter, Inc.
    Inventors: David J. Vachon, Shahram Moaddeb
  • Patent number: 5438987
    Abstract: The present invention includes a body implantable lead having a multipolar proximal connector, at least a first conductor coupled to at least one stimulating electrode, a sensor for sensing at least one physiologic parameter of the body, and a second and a third conductor coupled to the sensor. The sensor is hermetically sealed in a D-shaped housing. Sensor components are mounted onto a microelectronic substrate which is advantageously placed on an inner flat portion of the D-shaped housing. End caps having sealing rings, either glass frit or metal, are used to seal the ends of the shell. A hermetic seal is easily achieved by heating the sealing material until they re-flow between the end caps and the shell. Advantageously, the sensor terminals are sized to fit snugly within a narrow bore of the end cap which is then circumferentially welded closed. The D-shaped sensor is placed on a carrier having at least two lumens.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: August 8, 1995
    Assignee: Pacesetter, Inc.
    Inventors: James R. Thacker, Alvin H. Weinberg, Shahram Moaddeb