Patents by Inventor Shailesh N. Joshi

Shailesh N. Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830544
    Abstract: A self-healing metal structure is provided for transferring heat between an electronics component and a substrate. The self-healing metal structure includes a base metal structural component. A phase change material is provided adjacent at least a portion of the base metal structural component. A protective component at least partially encapsulates the phase change material. Upon the presence of a spatial defect in the base metal structural component, the phase change material reacts with the base structural component to form an intermetallic compound to at least partially occupy the spatial defect. The phase change material at least partially encapsulated with the protective component may be disposed within the base metal structural component as a plurality of separate capsules incorporated therein, or the phase change material at least partially surrounds the base metal structural component.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 10, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Patent number: 10820454
    Abstract: A vapor chamber heat spreader includes a condenser arranged at a top end of the vapor chamber heat spreader, an evaporator arranged at an opposite end to the condenser; and multi-level wick structures. The multi-level structures include a first planar wick arranged adjacent to the condenser, a second planar wick arranged adjacent to the evaporator, a plurality of condenser posts for supplying liquid condensed by the condenser, a plurality of evaporator posts for supply the liquid towards the evaporator, and a mesh layer. The mesh layer is arranged between the condenser posts and the evaporator posts and configured to separate the condenser posts from the evaporator posts. The mesh layer includes a plurality of vent holes. The mesh layer is a porous layer having high permeability.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: October 27, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Feng Zhou
  • Patent number: 10818576
    Abstract: Methods for forming bonded assemblies using metal inverse opal and cap structures are disclosed. In one embodiment, a method for forming a bonded assembly includes positioning a substrate against a polymer support that is porous, depositing a metal onto and within the polymer support, disposing a cap layer to the polymer support opposite of the substrate to form a bottom electrode, and removing the polymer support from between the substrate and the cap layer to form a metal inverse opal structure disposed therebetween.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 27, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Shailesh N. Joshi, Naoya Take, Paul Braun, Julia Kohanek, Gaurav Singhal
  • Patent number: 10807629
    Abstract: A vehicle steering wheel includes a first volume of phase change material and a second volume of phase change material spaced apart from the first volume of phase change material. The first volume of phase change material contains a greater mass of phase change material than the second volume of phase change material. A first wall forms a rim of the steering wheel. The first wall is in direct contact with both the first volume of phase change material and the second volume of phase change material, so as to facilitate heat transfer between the first volume of phase change material and the second volume of phase change material.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 20, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Brian J. Pinkelman, Umesh N. Gandhi, Shailesh N. Joshi
  • Patent number: 10804236
    Abstract: An assembly that includes a first substrate, a second substrate, and a stress mitigation layer disposed between the first and the second substrates. The stress mitigation layer is directly bonded onto the second substrate, and the second substrate is separated from the intermetallic compound layer by the stress mitigation layer. The stress mitigation layer has a high purity of at least 99% aluminum such that the stress mitigation layer reduces thermomechanical stresses on the first and second substrates. The assembly further includes an intermetallic compound layer disposed between the first substrate and the stress mitigation layer such that the stress mitigation layer is separated from the first substrate by the intermetallic compound layer.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 13, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Publication number: 20200318651
    Abstract: Fan performance can be adjusted based on real-time operating conditions. The fan can include a plurality of blades operatively connected to a rotor. The blades can extend radially outward from the rotor to a tip. A housing can substantially surround the fan. The housing can have an inner peripheral surface that defines an inner diameter. The inner peripheral surface can include a first portion and a second portion downstream of the first portion. The first portion can be adjacently upstream of the plurality of blades, and the second portion can be substantially aligned with the plurality of blades. A plurality of actuators being distributed in a circumferential direction of the housing. The actuators can be operatively positioned to cause the inner diameter of the first portion or the second portion to be altered. As a result, one or more performance characteristics of the fan can be changed.
    Type: Application
    Filed: April 4, 2019
    Publication date: October 8, 2020
    Inventors: Shailesh N. Joshi, Ercan Mehmet Dede, Umesh N. Gandhi
  • Patent number: 10794642
    Abstract: A heat transfer surface with a convective cooling layer includes a metal substrate and a porous metal foam layer transient liquid phase (TLP) bonded on the metal substrate. The porous metal foam layer includes a plurality of high melting temperature (HMT) particles and a plurality of micro-channels. A first TLP intermetallic layer is positioned between, and TLP bonds together, adjacent HMT particles to form the porous metal foam layer. A second TLP intermetallic layer is positioned between and TLP bonds a subset of the plurality of HMT particles to the metal substrate such that the porous metal foam layer is TLP bonded to the metal substrate. The plurality of micro-channels extend from an outer surface of the porous metal foam layer to the metal substrate such that a cooling fluid may be wicked through the plurality of micro-channels to the surface of the metal substrate.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: October 6, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Yanghe Liu
  • Publication number: 20200301772
    Abstract: Systems and methods for detecting a fault or model mismatch are disclosed. A system includes a processor, a memory, and one or more sensors. The sensors may detect data associated with an electronic device. The memory may store processor executable instructions to: compute T2 and Q statistics, over a time period, and apply a model mismatch and fault detection logic based on the T2 and Q statistics. The model mismatch and fault detection logic may: count consecutive instances where a T2 statistic exceeds a T2 threshold via a T2 counter, update a probability of fault based on the T2 counter, count consecutive instances where a Q statistic exceeds a Q threshold via a Q counter, update a probability of model mismatch based on the Q counter, and detect one of a fault or a model mismatch based on a probability of fault threshold and a probability of model mismatch threshold.
    Type: Application
    Filed: March 22, 2019
    Publication date: September 24, 2020
    Applicants: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF CONNECTICUT
    Inventors: Donald McMenemy, Weiqiang Chen, Ali M. Bazzi, Krishna R. Pattipati, Shailesh N. Joshi
  • Publication number: 20200286849
    Abstract: Encapsulated stress mitigation layers and assemblies having the same are disclosed. An assembly that includes a first substrate, a second substrate, an encapsulating layer disposed between the first and second substrates, and a stress mitigation layer disposed in the encapsulating layer such that the stress mitigation layer is encapsulated within the encapsulating layer. The stress mitigation layer has a lower melting temperature relative to a higher melting temperature of the encapsulating layer. The assembly includes an intermetallic compound layer disposed between the first substrate and the encapsulating layer such that the encapsulating layer is separated from the first substrate by the intermetallic compound layer. The stress mitigation layer melts into a liquid when the assembly operates at a temperature above the low melting temperature of the stress mitigation layer and the encapsulating layer maintains the liquid of the stress mitigation layer within the assembly.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Patent number: 10751840
    Abstract: A multilayer composite bonding material with a plurality of thermal stress compensation layers is provided. The plurality of thermal stress compensation layers include a metal core layer, a pair of particle layers extending across the metal core layer such that the metal core layer is sandwiched between the pair of particle layers, and a pair of metal outer layers extending across the pair of particle layers such that the pair of particle layers are sandwiched between the pair of metal outer layers. A pair of low melting point (LMP) bonding layers extend across the pair of metal outer layers. The metal core layer, the pair of particle layers, and the pair of metal outer layers each have a melting point above a transient liquid phase (TLP) sintering temperature, and the pair of LMP bonding layers each have a melting point below the TLP sintering temperature.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 25, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Ercan M. Dede
  • Patent number: 10755000
    Abstract: Methods and apparatuses for assessing the behavior of high temperature bonding systems such as sinter joint models of virtual interconnect microstructures via simulations that analyze sinter joint model properties include defining a plurality of sinter joint objects in a virtual interconnect microstructure, each sinter joint object having a type and a size, and determining a location of individual sinter joint objects with respect to one another in a virtual joint space to create a sinter joint model. The type is at least one of an intermetallic compound, a void, and a metal particle. The location is determined by, for each object, creating three-dimensional coordinates, and based on a determination that the sinter joint object is spaced from and non-overlapping with previously placed sinter joint objects, locking a position and size of the sinter joint object.
    Type: Grant
    Filed: November 6, 2016
    Date of Patent: August 25, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., University of Maryland
    Inventors: Hannes Martin Hinrich Greve, F. Patrick McCluskey, Shailesh N. Joshi
  • Patent number: 10746477
    Abstract: Systems and methods for degassing and charging phase-change thermal devices are disclosed. In one embodiment, a system includes a flask, a first shut-off valve fluidly coupled to an outlet of the flask, and a first valve fluidly coupled to the first shut-off valve by a fluid line. The system further includes a second valve fluidly coupled to the first valve, wherein the second valve is operable to be fluidly coupled to the phase-change thermal device, a second shut-off valve fluidly coupled to the second valve, a third valve fluidly coupled to the first valve, a vacuum pump fluidly coupled to the third valve, and a fluid injection device fluidly coupled to the fluid line between the first valve and the first shut-off valve. The fluid injection device draws the working fluid from the flask and injects a desired amount into the phase-change thermal device.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: August 18, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Feng Zhou, Yanghe Liu, Ercan Mehmet Dede, Shailesh N. Joshi
  • Publication number: 20200258811
    Abstract: A cooling device including an encapsulated phase change porous layer that exhibits an increased heat capacity is disclosed. The encapsulated phase change porous layer may include a sintered porous layer, a phase change material formed over the sintered porous layer, and an encapsulation material formed over the phase change material. The encapsulation material may encapsulate the phase change material between the encapsulation material and the sintered porous layer and retain the phase change material between the encapsulation material and the sintered porous layer when a fluid is flowed through or in contact with the encapsulated phase change porous layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Applicant: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventor: Shailesh N. Joshi
  • Patent number: 10743442
    Abstract: An assembly includes a substrate including a base portion defining a plurality of orifices that extend through the base portion, the plurality of orifices defining a plurality of jet paths extending along and outward from the plurality of orifices, a mesh coupled to the base portion, the mesh defining a plurality of pores aligned with the plurality of jet paths, and a heat-generating device coupled to the mesh opposite the base portion, the heat-generating device defining a bottom surface that is oriented transverse to the plurality of jet paths.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 11, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Publication number: 20200245500
    Abstract: The present disclosure generally relates to a stack including cooling tubes embedded within a solder, and methods of forming the same. A method of forming a stack includes placing a first amount of bond layer precursor material on a substrate, placing one or more cooling tubes on the first amount of bond layer precursor material, the one or more cooling tubes having a ceramic tube wall electroplated with a metal, placing a second amount of bond layer precursor material on the one or more cooling tubes such that the one or more cooling tubes are surrounded by bond layer precursor material placing an assembly having the one or more heat generating devices on the second amount of bond layer precursor material, and performing a bonding process to form a bond layer between the assembly and the substrate with the one or more cooling tubes disposed in the bond layer.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Applicant: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Publication number: 20200235032
    Abstract: A method of forming a bonding assembly that includes positioning a plurality of polymer spheres against an opal structure and placing a substrate against a second major surface of the opal structure. The opal structure includes the first major surface and the second major surface with a plurality of voids defined therebetween. The plurality of polymer spheres encapsulates a solder material disposed therein and contacts the first major surface of the opal structure. The method includes depositing a material within the voids of the opal structure and removing the opal structure to form an inverse opal structure between the first and second major surfaces. The method further includes removing the plurality of polymer spheres to expose the solder material encapsulated therein and placing a semiconductor device onto the inverse opal structure in contact with the solder material.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 23, 2020
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Shailesh N. Joshi
  • Publication number: 20200219792
    Abstract: Methods for forming bonded assemblies using metal inverse opal and cap structures are disclosed. In one embodiment, a method for forming a bonded assembly includes positioning a substrate against a polymer support that is porous, depositing a metal onto and within the polymer support, disposing a cap layer to the polymer support opposite of the substrate to form a bottom electrode, and removing the polymer support from between the substrate and the cap layer to form a metal inverse opal structure disposed therebetween.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The Board of Trustees of the University of Illinois
    Inventors: Shailesh N. Joshi, Naoya Take, Paul Braun, Julia Kohanek, Gaurav Singhal
  • Patent number: 10700036
    Abstract: Encapsulated stress mitigation layers and assemblies having the same are disclosed. An assembly that includes a first substrate, a second substrate, an encapsulating layer disposed between the first and second substrates, and a stress mitigation layer disposed in the encapsulating layer such that the stress mitigation layer is encapsulated within the encapsulating layer. The stress mitigation layer has a lower melting temperature relative to a higher melting temperature of the encapsulating layer. The assembly includes an intermetallic compound layer disposed between the first substrate and the encapsulating layer such that the encapsulating layer is separated from the first substrate by the intermetallic compound layer. The stress mitigation layer melts into a liquid when the assembly operates at a temperature above the low melting temperature of the stress mitigation layer and the encapsulating layer maintains the liquid of the stress mitigation layer within the assembly.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: June 30, 2020
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take
  • Patent number: 10692302
    Abstract: A method includes collecting, via processing circuitry, a first set of multi-load data from a power control unit of a vehicle and usage data at a first servicing of the vehicle, computing, via the processing circuitry, a Mahalanobis Distance (MD) using the first set of multi-load data, defining, via the processing circuitry, a healthy state and an anomaly threshold based on the MD, correlating, via the processing circuitry, the first set of usage data to the anomaly threshold; generating, via the processing circuitry, a usage based servicing schedule for a vehicle; collecting, via the processing circuitry, a next set of multi-load data and usage data at a next servicing of the vehicle; updating, via the processing circuitry, the MD, a servicing schedule and evaluating the performance of the vehicle; determining, via the processing circuitry, whether the MD crosses the anomaly threshold; and transmitting, via a network, a servicing alert.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: June 23, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Ercan M. Dede, Shailesh N. Joshi
  • Publication number: 20200187392
    Abstract: An assembly includes a substrate including a base portion defining a plurality of orifices that extend through the base portion, the plurality of orifices defining a plurality of jet paths extending along and outward from the plurality of orifices, a mesh coupled to the base portion, the mesh defining a plurality of pores aligned with the plurality of jet paths, and a heat-generating device coupled to the mesh opposite the base portion, the heat-generating device defining a bottom surface that is oriented transverse to the plurality of jet paths.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Naoya Take