Patents by Inventor Shambhu N. Roy

Shambhu N. Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879094
    Abstract: An electrostatic chucking force tool is described that may be used on workpiece carriers for micromechanical and semiconductor processing. One example includes a workpiece fitting to hold a workpiece when gripped by an electrostatic chucking force by an electrostatic chuck, an arm coupled to the workpiece fitting to pull the workpiece through the workpiece fitting laterally across the chuck, and a force gauge coupled to the arm to measure an amount of force with which the workpiece fitting is pulled by the arm in order to move the workpiece.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: December 29, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas D. Nemani, Gautam Pisharody, Seshadri Ramaswami, Shambhu N. Roy, Niranjan Kumar
  • Patent number: 10468285
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Publication number: 20180144959
    Abstract: An electrostatic chucking force tool is described that may be used on workpiece carriers for micromechanical and semiconductor processing. One example includes a workpiece fitting to hold a workpiece when gripped by an electrostatic chucking force by an electrostatic chuck, an arm coupled to the workpiece fitting to pull the workpiece through the workpiece fitting laterally across the chuck, and a force gauge coupled to the arm to measure an amount of force with which the workpiece fitting is pulled by the arm in order to move the workpiece.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 24, 2018
    Inventors: Srinivas D. Nemani, Gautam Pisharody, Seshadri Ramaswami, Shambhu N. Roy, Niranjan Kumar
  • Publication number: 20180122679
    Abstract: A substrate carrier with contacts is described that is balanced for thermal stress. In one example workpiece carrier has a rigid substrate configured to support a workpiece to be carried for processing, a first dielectric layer over the substrate, an electrostatic conductive electrode over the first dielectric layer to electrostatically hold the workpiece to be carried, a second dielectric layer over the electrode to electrically isolate the workpiece from the electrode, and a third dielectric layer under the substrate to counter thermal stress applied to the substrate by the first and second dielectric layers.
    Type: Application
    Filed: October 28, 2016
    Publication date: May 3, 2018
    Inventors: Shambhu N. Roy, Gautam Pisharody, Seshadri Ramaswami, Srinivas D. Nemani, Zhong Qiang Hua, Douglas A. Buchberger, JR., Niranjan Kumar, Ellie Y. Yieh
  • Publication number: 20180033673
    Abstract: Embodiments of methods and apparatus for processing a substrate are provided herein. In some embodiments, a substrate support includes a base having a first support surface designed to support a substrate having a given width; a plurality of arcuate slots formed through the base; a corresponding plurality of lift pins disposed through the arcuate slots, wherein the lift pins are rotationally and vertically movable with respect to the base; and a cover plate disposed on but not coupled to the base to cover the first support surface, wherein the cover plate has a diameter greater than the given width, and wherein the cover plate includes a second support surface designed to support a substrate having the given width.
    Type: Application
    Filed: July 23, 2017
    Publication date: February 1, 2018
    Inventors: Srinivas D. Nemani, Shambhu N. Roy, Sultan Malik, Viachslav Babayan
  • Publication number: 20180025931
    Abstract: A processed wafer is described that may be used as a workpiece carrier in semiconductor and mechanical processing. In some examples, the workpiece carrier includes a substrate, an electrode formed on the substrate to carry an electric charge to grip a workpiece, a through hole through the substrate and connected to the electrode, and a dielectric layer over the substrate to isolate the electrode from the workpiece.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 25, 2018
    Inventors: Srinivas D. Nemani, Shambhu N. Roy, Gautam Pisharody, Douglas A. Buchberger, JR., Ellie Y. Yieh, Zhong Qiang Hua
  • Patent number: 9818585
    Abstract: Methods and apparatus for in-situ plasma cleaning of a deposition chamber are provided. In one embodiment a method for plasma cleaning a deposition chamber without breaking vacuum is provided. The method comprises positioning a substrate on a susceptor disposed in the chamber and circumscribed by an electrically floating deposition ring, depositing a metal film on the substrate and the deposition ring in the chamber, grounding the metal film deposited on the deposition ring without breaking vacuum, and removing contaminants from the chamber with a plasma formed in the chamber without resputtering the metal film on the grounded deposition ring and without breaking vacuum.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Richard J. Green, Cheng-Hsiung Tsai, Shambhu N. Roy, Puneet Bajaj, David H. Loo
  • Publication number: 20170309509
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 9728437
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 8, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 9484202
    Abstract: Embodiments herein provide apparatus and methods for performing a deposition and a patterning process on a spacer layer with good profile control in multiple patterning processes. In one embodiment, a method for depositing and patterning a spacer layer during a multiple patterning process includes conformally forming a spacer layer on an outer surface of a patterned structure disposed on a substrate, wherein the patterned structure has a first group of openings defined therebetween, selectively treating a first portion of the spacer layer formed on the substrate without treating a second portion of the spacer layer, and selectively removing the treated first portion of the spacer layer.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: November 1, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jie Zhou, Chentsau Ying, Shambhu N. Roy, Srinivas D. Nemani, Jingjing Liu, Ellie Y. Yieh
  • Patent number: 9447499
    Abstract: A dual-plenum showerhead for semiconductor processing operations is provided. The showerhead may include a faceplate with two sets of gas distribution holes, each set fed by a separate plenum. One set of gas distribution holes may be through-holes in the faceplate of the showerhead and may allow gases trapped between the faceplate and a plasma dome to flow towards a wafer. The other set of gas distribution holes may distribute gas routed through passages or channels in the faceplate towards the wafer. The passages or channels in the faceplate may include radial channels and annular channels and may be fed from an annular gas distribution channel about the periphery of the faceplate.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: September 20, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Shambhu N. Roy, Vincent E. Burkhart, Natan Solomon, Sanjay Gopinath, Kaihan Abidi Ashtiani, Bart van Schravendijk, Jason Stevens, Dhritiman Subha Kashyap, David Cohen
  • Publication number: 20160225651
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 4, 2016
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 9382625
    Abstract: Methods for making a nanocrystalline diamond layer are disclosed herein. A method of forming a layer can include activating a deposition gas comprising an alkane and a hydrogen containing gas at a first pressure, delivering the activated deposition gas to the substrate at a second pressure which is less than the first pressure, forming a nanocrystalline diamond layer, treating the layer with an activated hydrogen containing gas to remove one or more polymers from the surface and repeating the cycle to achieve a desired thickness.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: July 5, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jun Xue, Jingjing Liu, Yongmei Chen, Ludovic Godet, Chentsau Ying, Shambhu N. Roy
  • Patent number: 9337067
    Abstract: A wafer support assembly including a wafer support and cooling plate with radial thermal chokes is provided. The cooling plate and wafer support may have limited contact and may not contact each other outside of certain limited thermal contact patches. The thermal contact patches may generally define one or more radial thermal choke regions. In some implementations, high- and low-temperature cooling systems may be placed at one or more locations across the cooling plate to assist in temperature management.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 10, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Shambhu N. Roy, Vincent E. Burkhart, Scott J. Fields
  • Publication number: 20150315707
    Abstract: Methods for making a nanocrystalline diamond layer are disclosed herein. A method of forming a layer can include activating a deposition gas comprising an alkane and a hydrogen containing gas at a first pressure, delivering the activated deposition gas to the substrate at a second pressure which is less than the first pressure, forming a nanocrystalline diamond layer, treating the layer with an activated hydrogen containing gas to remove one or more polymers from the surface and repeating the cycle to achieve a desired thickness.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Inventors: Jun XUE, Jingjing LIU, Yongmei CHEN, Ludovic GODET, Chentsau YING, Shambhu N. ROY
  • Patent number: 9064911
    Abstract: A method and apparatus for controlling the temperature of a substrate support assembly includes a pedestal, a chuck connected to the pedestal, a cooling plate structure thermally coupled with the chuck, a heater thermally coupled with the cooling plate structure, and a controller configured to control the cooling plate structure while controlling the heater during processing of a substrate on the chuck. The method includes cooling a substrate support with a cooling plate structure while heating the cooling plate structure with a heater thermally coupled with the cooling plate structure, monitoring the performance of the cooling plate structure and the heater, and regulating the performance of the cooling plate structure and the heater to maintain the substrate support at a desired temperature.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: June 23, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shambhu N. Roy, Matt Cheng-hsiung Tsai
  • Publication number: 20140366912
    Abstract: Methods and apparatus for in-situ plasma cleaning of a deposition chamber are provided. In one embodiment a method for plasma cleaning a deposition chamber without breaking vacuum is provided. The method comprises positioning a substrate on a susceptor disposed in the chamber and circumscribed by an electrically floating deposition ring, depositing a metal film on the substrate and the deposition ring in the chamber, grounding the metal film deposited on the deposition ring without breaking vacuum, and removing contaminants from the chamber with a plasma formed in the chamber without resputtering the metal film on the grounded deposition ring and without breaking vacuum.
    Type: Application
    Filed: May 16, 2014
    Publication date: December 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Richard J. GREEN, Cheng-Hsiung TSAI, Shambhu N. ROY, Puneet BAJAJ, David H. LOO
  • Patent number: 8900471
    Abstract: Methods and apparatus for in-situ plasma cleaning of a deposition chamber are provided. In one embodiment a method for plasma cleaning a deposition chamber without breaking vacuum is provided. The method comprises positioning a substrate on a susceptor disposed in the chamber and circumscribed by an electrically floating deposition ring, depositing a metal film on the substrate and the deposition ring in the chamber, grounding the metal film deposited on the deposition ring without breaking vacuum, and removing contaminants from the chamber with a plasma formed in the chamber without resputtering the metal film on the grounded deposition ring and without breaking vacuum.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Richard J. Green, Cheng-hsiung Tsai, Shambhu N. Roy, Puneet Bajaj, David H. Loo
  • Publication number: 20130341433
    Abstract: A dual-plenum showerhead for semiconductor processing operations is provided. The showerhead may include a faceplate with two sets of gas distribution holes, each set fed by a separate plenum. One set of gas distribution holes may be through-holes in a faceplate of the showerhead and may allow gases trapped between the faceplate and a plasma dome to flow towards a wafer. The other set of gas distribution holes may distribute gas routed through passages or channels in the faceplate towards the wafer. The passages or channels in the faceplate may include radial channels and annular channels and may be fed from an annular gas distribution channel about the periphery of the faceplate.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Shambhu N. Roy, Vincent E. Burkhart, Natan Solomon, Sanjay Gopinath, Kaihan Abidi Ashtiani, Bart van Schravendijk, Jason Stevens, Dhritiman Subha Kashyap, David Cohen
  • Patent number: 8559159
    Abstract: An electrostatic chuck and method of use thereof is provided herein. In some embodiments, an electrostatic chuck may include a disk having a first side to support a substrate thereon and a second side, opposing the first side, to provide an interface to selectively couple the disk to a thermal control plate, a first electrode disposed within the disk proximate the first side to electrostatically couple the substrate to the disk and a second electrode disposed within the disk proximate the opposing side of the disk to electrostatically couple the disk to the thermal control plate. In some embodiments, the second electrode may also be configured to heat the disk.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: October 15, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Shambhu N. Roy, Martin Lee Riker, Keith A. Miller, Vijay D. Parkhe, Steven V. Sansoni