Patents by Inventor Shamino Wang

Shamino Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8213797
    Abstract: Methods and apparatus are described for DWDM transport of CATV and digital signals over optical fiber in low-dispersion spectral regions. A method includes transporting a plurality of optical carriers of different wavelengths over an optical link using wavelength division multiplexing, the optical link including a plurality of optical segments. The plurality of optical channel center wavelengths defined by the plurality of optical carriers are clustered proximate an average value of a zero-dispersion wavelength of the optical link, or near either a) a low wavelength edge or b) a high wavelength edge of a range of zero-dispersion wavelengths of the optical link and a plurality of optical channel center frequencies defined by the plurality of optical channel center wavelengths are non-uniformly spaced apart.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 3, 2012
    Assignee: Aurora Networks, Inc.
    Inventors: Willem A Mostert, Sudhesh Mysore, Samuel Chang, Shamino Wang, Charles Barker, Oleh Sniezko
  • Publication number: 20070297801
    Abstract: Methods and apparatus are described for DWDM transport of CATV and digital signals over optical fiber in low-dispersion spectral regions. A method includes transporting a plurality of optical carriers of different wavelengths over an optical link using wavelength division multiplexing, the optical link including a plurality of optical segments. The plurality of optical channel center wavelengths defined by the plurality of optical carriers are clustered proximate an average value of a zero-dispersion wavelength of the optical link, or near either a) a low wavelength edge or b) a high wavelength edge of a range of zero-dispersion wavelengths of the optical link and a plurality of optical channel center frequencies defined by the plurality of optical channel center wavelengths are non-uniformly spaced apart.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 27, 2007
    Inventors: Willem Mostert, Sudhesh Mysore, Samuel Chang, Shamino Wang, Charles Barker, Oleh Sniezko
  • Publication number: 20060153251
    Abstract: A method of operating a stretched-pulse Raman fiber laser includes producing laser radiation gain in a laser cavity using predominantly Raman amplification. Such a stretched-pulse Raman fiber laser has a laser cavity that includes a Negative Group Velocity Dispersion Fiber connected in series with a Positive Group Velocity Dispersion Fiber, a polarization controller and an isolator. In some examples, the Negative Group Velocity Dispersion Fiber is a Dispersion Compensating Fiber. In other examples, the Negative Group Velocity Dispersion Fiber is replaced by a Raman Specialty Fiber.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 13, 2006
    Inventor: Shamino Wang
  • Publication number: 20050271093
    Abstract: A system and method for increasing a repetition rate of an optical pulse train. The system includes a pulsed source configured to generate the optical pulse train and a cyclic demultiplexer configured to process the optical pulse train and output an output optical pulse train on each of a number of output ports. Each of the output optical pulse trains has a final repetition rate that is a multiple of the repetition rate corresponding to the optical pulse train generated by the pulsed source.
    Type: Application
    Filed: June 3, 2004
    Publication date: December 8, 2005
    Inventor: Shamino Wang
  • Publication number: 20050201749
    Abstract: The disclosure is directed toward an optical transmission system comprising a primary path disposed between a first end and a second end. The primary path is configured to transmit optical signals between the first end and the second end. A secondary path is disposed between the first end and the second end. The secondary path is configured to transmit optical signals between the first end and the second end, e.g., in the event of a break in the primary path. A first variable ratio coupler is coupled to the primary path and the secondary path between the first end and the second end. The first variable ratio coupler is configured to adjust a coupling ratio between the primary path and the secondary path.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Applicant: General Instrument Corporation
    Inventors: Shamino Wang, Chandra Jasti