Patents by Inventor Shan E. Gaw

Shan E. Gaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11589843
    Abstract: An apparatus includes a transfer adapter, a puncture member, a disinfection member, and a fluid reservoir. The transfer adapter has a proximal end portion and a distal end portion, and defines an inner volume configured to receive the puncture member. The transfer adapter is coupled to the disinfection member. The distal end portion of the transfer adapter includes a port fluidically coupled to the puncture member and configured to be placed in fluid communication with a bodily-fluid of a patient. The proximal end portion is configured to receive a portion of the fluid reservoir to allow the fluid reservoir to be moved within the inner volume between a first position, in which a surface of the fluid reservoir is placed in contact with the disinfection member, and a second position, in which the puncture member punctures the surface to place the puncture member in fluid communication with the fluid reservoir.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 28, 2023
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Richard G. Patton, Shan E. Gaw
  • Publication number: 20230020943
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Application
    Filed: April 4, 2022
    Publication date: January 19, 2023
    Inventors: Douglas F. DeVries, David H. Good, Shan E. Gaw, Joseph Cipollone
  • Patent number: 11529081
    Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: December 20, 2022
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Timothy F. Ramsey
  • Publication number: 20220387745
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Joseph Cipollone, Shan E. Gaw
  • Publication number: 20220369970
    Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
  • Publication number: 20220369972
    Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
  • Publication number: 20220369971
    Abstract: An apparatus includes a pre-sample reservoir, a diversion mechanism, and a flow metering mechanism. The diversion mechanism has an inlet port couplable to a lumen-defining device to receive bodily-fluids from a patient, a first outlet port fluidically couplable to the pre-sample reservoir, and a second outlet port fluidically couplable to a sample reservoir. The diversion mechanism defines a first fluid flow path and a second flow path that are configured to place the first outlet port and the second outlet port, respectively, in fluid communication with the inlet port. The flow metering mechanism is configured to meter a flow of a predetermined volume of bodily-fluid through the first fluid flow path into the pre-sample reservoir, to meter a flow of a second volume of bodily-fluid through the second fluid flow path into the sample reservoir, and to display a volumetric indicator associated with the predetermined volume and the second volume.
    Type: Application
    Filed: January 25, 2022
    Publication date: November 24, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
  • Publication number: 20220361786
    Abstract: An apparatus includes a housing, defining an inner volume, and an actuator mechanism movably disposed therein. The actuator mechanism is configured to be transitioned from a first configuration to a second configuration to define a pre-sample reservoir fluidically couplable to receive a pre-sample volume of bodily-fluid via an inlet port of the housing. The actuator mechanism is movable from a first position to a second position within the housing after the pre-sample reservoir receives the pre-sample volume such that the housing and the actuator mechanism collectively define a sample reservoir to receive a sample volume of bodily-fluid via the inlet port. The outlet port is in fluid communication with the sample reservoir and is configured to be fluidically coupled to an external fluid reservoir after the sample volume is disposed in the sample reservoir to transfer at least a portion of the sample volume into the external fluid reservoir.
    Type: Application
    Filed: December 22, 2021
    Publication date: November 17, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Shan E. GAW, Jay M. MIAZGA, Shannon E. EUBANKS, Richard G. PATTON
  • Publication number: 20220304601
    Abstract: A fluid control device includes an inlet configured to be placed in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device, which can produce a negative pressure differential between the outlet and the inlet. A sequestration portion is in fluid communication with the inlet and includes a first flow controller configured to transition from a first state to a second state to place the sequestration portion in fluid communication with the outlet when the negative pressure differential has a first magnitude. A sampling portion is in fluid communication with an outlet and includes a second flow controller configured to transition from a first state to a second state to place the sampling portion in fluid communication with the inlet when the negative pressure differential has a second magnitude greater than the first magnitude.
    Type: Application
    Filed: November 2, 2021
    Publication date: September 29, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
  • Patent number: 11439332
    Abstract: A fluid transfer device for parenterally transferring fluid to and/or from a patient includes a housing, a needle, and an occlusion mechanism. The housing defines a fluid flow path and is couplable to a fluid reservoir. The needle has a distal end portion that is configured to be inserted into the patient and a proximal end portion that is configured to be fluidically coupled to the fluid flow path of the housing, and defines a lumen therebetween. The occlusion mechanism selectively controls a fluid flow between the needle and the fluid flow path. The occlusion mechanism includes an occlusion member that is movable between a first configuration where the lumen of the needle is obstructed during insertion into the patient and a second configuration where the lumen of the needle is unobstructed after the needle has been inserted into the patient allowing fluid transfer to or from the patient.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 13, 2022
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Richard G. Patton
  • Patent number: 11419531
    Abstract: A fluid control device includes an inlet configured to be placed in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has sequestration portion that can be vented or evacuated. The fluid control device has a first state in which an initial volume of bodily fluid can flow from the inlet to the sequestration portion and a second state in which (1) the initial volume is sequestered in the sequestration portion, and (2) a subsequent volume of bodily fluid, being substantially free of contaminants, can flow through at least a portion of the fluid control device and into the fluid collection device. The fluid control device can transition automatically or in response to an actuation of a portion of the fluid control device after the sequestration portion receives the initial volume.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: August 23, 2022
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Jay M. Miazga, Shan E. Gaw, Timothy F. Ramsey, Julie A. Schnur
  • Patent number: 11395612
    Abstract: An apparatus includes a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing defines an inner volume and has an inlet port that can be fluidically coupled to a patient and an outlet port. The fluid reservoir is disposed in the inner volume to receive and isolate a first volume of a bodily-fluid. The flow control mechanism is rotatable in the housing from a first configuration, in which a first lumen places the inlet port is in fluid communication with the fluid reservoir, and a second configuration, in which a second lumen places the inlet port in fluid communication with the outlet port. The actuator is configured to create a negative pressure in the fluid reservoir and is configured to rotate the flow control mechanism from the first configuration to the second configuration after the first volume of bodily-fluid is received in the fluid reservoir.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: July 26, 2022
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Richard G. Patton, Jay M. Miazga, Shan E. Gaw
  • Patent number: 11395611
    Abstract: An apparatus includes a housing, a fluid reservoir, a flow control mechanism, and an actuator. The housing defines an inner volume and has an inlet port that can be fluidically coupled to a patient and an outlet port. The fluid reservoir is disposed in the inner volume to receive and isolate a first volume of a bodily-fluid. The flow control mechanism is rotatable in the housing from a first configuration, in which a first lumen places the inlet port is in fluid communication with the fluid reservoir, and a second configuration, in which a second lumen places the inlet port in fluid communication with the outlet port. The actuator is configured to create a negative pressure in the fluid reservoir and is configured to rotate the flow control mechanism from the first configuration to the second configuration after the first volume of bodily-fluid is received in the fluid reservoir.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: July 26, 2022
    Assignee: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. Bullington, Richard G. Patton, Jay M. Miazga, Shan E. Gaw
  • Publication number: 20220218248
    Abstract: A bodily-fluid transfer device includes a housing, a pre-sample reservoir, and an actuator. The housing defines an inner volume between a substantially open proximal end portion and a distal end portion that includes a port couplable to a lumen-defining device. The pre-sample reservoir is fluidically couplable to the port to receive a first volume of bodily fluid. The actuator is at least partially disposed in the inner volume and has a proximal end portion that includes an engagement portion and a distal end portion that includes a sealing member. The engagement portion is configured to allow a user to selectively move the actuator between a first configuration such that bodily fluid can flow from the port to the pre-sample reservoir, and a second configuration such that bodily fluid can flow from the port to a sample reservoir defined at least in part by the sealing member and the housing.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
  • Publication number: 20220218250
    Abstract: A syringe-based device includes a housing, a pre-sample reservoir, and an actuator. The housing defines an inner volume between a substantially open proximal end portion and a distal end portion that includes a port couplable to a lumen-defining device. The pre-sample reservoir is fluidically couplable to the port to receive and isolate a first volume of bodily fluid. The actuator is at least partially disposed in the inner volume and has a proximal end portion that includes an engagement portion and a distal end portion that includes a sealing member. The engagement portion is configured to allow a user to selectively move the actuator between a first configuration such that bodily fluid can flow from the port to the pre-sample reservoir, and a second configuration such that bodily fluid can flow from the port to a sample reservoir defined at least in part by the sealing member and the housing.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
  • Publication number: 20220218249
    Abstract: A syringe-based device includes a housing, a pre-sample reservoir, and an actuator. The housing defines an inner volume between a substantially open proximal end portion and a distal end portion that includes a port couplable to a lumen-defining device. The pre-sample reservoir is fluidically couplable to the port to receive and isolate a first volume of bodily fluid. The actuator is at least partially disposed in the inner volume and has a proximal end portion that includes an engagement portion and a distal end portion that includes a sealing member. The engagement portion is configured to allow a user to selectively move the actuator between a first configuration such that bodily fluid can flow from the port to the pre-sample reservoir, and a second configuration such that bodily fluid can flow from the port to a sample reservoir defined at least in part by the sealing member and the housing.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Shan E. GAW
  • Publication number: 20220183600
    Abstract: An apparatus includes a housing, a flow control mechanism, and an actuator. At least a portion of the flow control mechanism is movably disposed within the housing. The apparatus further includes an inlet port and an outlet port, and defines a fluid reservoir. The outlet port is fluidically coupled to a second fluid reservoir and is fluidically isolated from the first fluid reservoir. The actuator is configured to move the flow control mechanism between a first configuration, in which the inlet port is placed in fluid communication with the fluid reservoir such that the fluid reservoir receives a first flow of bodily-fluid, and a second configuration, in which the inlet port is placed in fluid communication with the outlet port.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. PATTON, Jay M. MIAZGA, Shan E. GAW
  • Publication number: 20220175284
    Abstract: A fluid control device includes an inlet configured to be placed directly or indirectly in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. The fluid control device has a first state in which a negative pressure differential produced from an external source such as the fluid collection device is applied to the fluid control device to draw an initial volume of bodily fluid from the bodily fluid source, through the inlet, and into a sequestration portion of the fluid control device. The fluid control device has a second state in which (1) the sequestration portion sequesters the initial volume, and (2) the negative pressure differential draws a subsequent volume of bodily fluid, being substantially free of contaminants, from the bodily fluid source, through the fluid control device, and into the fluid collection device.
    Type: Application
    Filed: July 30, 2021
    Publication date: June 9, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY
  • Patent number: 11344692
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: May 31, 2022
    Assignee: Ventec Life Systems, Inc.
    Inventors: Joseph Cipollone, Shan E. Gaw
  • Publication number: 20220151525
    Abstract: An apparatus includes an inlet configured to be placed in fluid communication with a bodily fluid source and an outlet configured to be placed in fluid communication with a fluid collection device. A sequestration portion can be configured to receive an initial volume of bodily fluid. A flow controller disposed in the sequestration portion can be configured to transition from a first state to a second state in response to contact with the initial volume of bodily fluid. As the flow controller transitions, a negative pressure differential can be defined that is operable to draw the initial volume of bodily fluid into the sequestration portion. When the flow controller is in the second state, the negative pressure differential can be substantially equalized such that (1) the sequestration portion sequesters the initial volume and (2) a subsequent volume of bodily fluid can be transferred from the inlet to the outlet.
    Type: Application
    Filed: August 16, 2021
    Publication date: May 19, 2022
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Jay M. MIAZGA, Shan E. GAW, Timothy F. RAMSEY