Patents by Inventor Shane A. O'Mahony

Shane A. O'Mahony has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230120239
    Abstract: Described herein are techniques of characterizing electrical characteristics of a battery cell. The techniques employ a battery monitor coupled to a battery to measure voltage of the battery cell when it is in a recovery state after application of a stimulus (e.g., discharging or charging the battery). The measured voltage of the battery cell in the recovery state is then used to generate a characterization of the battery cell. The characterization may be used, for example, to match the battery cell with one or more similar battery cells to be coupled in a battery pack. In another example, the characterization may be used to verify authenticity of the battery cell.
    Type: Application
    Filed: December 19, 2022
    Publication date: April 20, 2023
    Inventors: Pieter Retief Kasselman, Rosemary B. Ryan, Shane O'Mahony, Brian Cox, Colin Gerard Lyden, Brendan Daly, Lewis Malaver
  • Publication number: 20220413054
    Abstract: Testing of a battery module can be conducted using monitoring electronics attached to the battery module. Stimulus can be applied to the battery module and removed. After removal of the stimulus, the monitoring electronics can collect signals from the monitoring electronics reflecting parameters of the battery module as it relaxes back to a non-stimulated state. The stimulus can be provided by test equipment or by components of a system in which the battery module, having attached monitoring electronics, is implemented. The monitoring electronics attached to the battery module can provide autonomous recording of signals associated with the battery module that can provide data regarding the status of the battery module or one or more batteries contained in the battery module.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 29, 2022
    Inventors: Shane O'Mahony, Joseph Caissie Bush, Colin G. Lyden
  • Patent number: 11460512
    Abstract: Testing of a battery module can be conducted using monitoring electronics attached to the battery module. Stimulus can be applied to the battery module and removed. After removal of the stimulus, the monitoring electronics can collect signals from the monitoring electronics reflecting parameters of the battery module as it relaxes back to a non-stimulated state. The stimulus can be provided by test equipment or by components of a system in which the battery module, having attached monitoring electronics, is implemented. The monitoring electronics attached to the battery module can provide autonomous recording of signals associated with the battery module that can provide data regarding the status of the battery module or one or more batteries contained in the battery module.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 4, 2022
    Assignee: Analog Devices International Unlimited Company
    Inventor: Shane O'Mahony
  • Publication number: 20220113356
    Abstract: A system and method are described for monitoring batteries at various phases of their lifecycle. The batteries may be monitored in non-operational and operational states. The monitoring may be done wirelessly. The information gathered from monitoring the batteries may be used to make decisions about the use of a battery.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Applicant: Analog Devices International Unlimited Company
    Inventors: Pieter Retief Kasselman, Shane O'Mahony, Rosemary B. Ryan, Steven Furr
  • Publication number: 20220082627
    Abstract: Described herein is a device for autonomously monitoring a battery is provided. The device is integrated with the battery (e.g., by being electrically coupled to the battery). The device obtains measurement data by injecting electrical signals into the battery and measuring an electrical response of the battery. The device participates in an authentication protocol with a computing device to verify a unique identity of the device to the computing device. After performing the authentication protocol verifying the unique identity of the device, the device transmits battery data to the computer. Further, techniques for verifying the identity of the battery using measurement data obtained by the device are described herein. The techniques generate a battery signature using the measurement data that is then used to verify the identity of the battery. For example, the battery signature may be used to determine whether the battery is counterfeit or defective.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 17, 2022
    Applicant: Analog Devices International Unlimited Company
    Inventors: Shane O'Mahony, Narsimh Dilip Kamath, Tze Lei Poo, Gina G. Aquilano, Hemtej Gullapalli, Lance Robert Doherty
  • Publication number: 20210302507
    Abstract: Testing of a battery module can be conducted using monitoring electronics attached to the battery module. Stimulus can be applied to the battery module and removed. After removal of the stimulus, the monitoring electronics can collect signals from the monitoring electronics reflecting parameters of the battery module as it relaxes back to a non-stimulated state. The stimulus can be provided by test equipment or by components of a system in which the battery module, having attached monitoring electronics, is implemented. The monitoring electronics attached to the battery module can provide autonomous recording of signals associated with the battery module that can provide data regarding the status of the battery module or one or more batteries contained in the battery module.
    Type: Application
    Filed: September 15, 2020
    Publication date: September 30, 2021
    Inventor: Shane O'Mahony
  • Patent number: 11051248
    Abstract: A system and method for monitoring components of a vehicle includes a manager and a wireless node. The manager is positioned on the vehicle and configured to wirelessly transmit a wake signal in response to an event. The wireless node positioned to monitor a component of the vehicle and includes an antenna, a wakeup circuit, and a node transceiver. The wakeup circuit is connected to the antenna and configured to monitor for the wake signal, and the node transceiver is configured to perform wireless communication with the manager. The wakeup circuit is configured to power on the node transceiver upon receipt of the wake signal.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: June 29, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Lance Robert Doherty, Shane O'Mahony, Philip Eugene Quinlan, Mark Alan Lemkin
  • Publication number: 20200288395
    Abstract: A system and method for monitoring components of a vehicle includes a manager and a wireless node. The manager is positioned on the vehicle and configured to wirelessly transmit a wake signal in response to an event. The wireless node positioned to monitor a component of the vehicle and includes an antenna, a wakeup circuit, and a node transceiver. The wakeup circuit is connected to the antenna and configured to monitor for the wake signal, and the node transceiver is configured to perform wireless communication with the manager. The wakeup circuit is configured to power on the node transceiver upon receipt of the wake signal.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Inventors: Lance Robert Doherty, Shane O'Mahony, Philip P.E. Quinlan, Mark Alan Lemkin
  • Patent number: 10129011
    Abstract: An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 13, 2018
    Assignee: Analog Devices Global
    Inventors: Muhammad Kalimuddin Khan, Kenneth J. Mulvaney, Philip P. E. Quinlan, Shane O'Mahony
  • Publication number: 20170264422
    Abstract: An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Muhammad Kalimuddin Khan, Kenneth J. Mulvaney, Philip P.E. Quinlan, Shane O'Mahony
  • Patent number: 9755678
    Abstract: Provided herein are apparatus and methods for transconductance amplifiers, such as split cascode low-noise transconductance amplifiers (LNTAs). In an embodiment, an LNTA includes split current paths each coupled to a different mixer by way of a different alternating current (AC) coupling capacitor. The split current paths of the LNTA can be enabled during different modes of operation, such as when the input to the LNTA is within different frequency bands.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 5, 2017
    Assignee: Analog Devices Global
    Inventors: Sivanendra Selvanayagam, Shane A. O'Mahony, Michael J. Deeney, Niall Kevin Kearney
  • Patent number: 9673962
    Abstract: An apparatus comprising: a signal detection circuit determine a count reached by a counter between successive detected edge signals and to provide an indication of whether successive detected edge signals are separated from each other by at least a prescribed time interval; a clock circuit that produces clock signal pulses in response to a provided indication of an occurrence of a succession of detected edge signals each separated from a previous edge signal of the succession by at least the prescribed time interval; phase matching circuitry configured to align the produced clock signal pulses with detected edge signals; and a pattern matching circuit that that samples a sequence of detected edge signals aligned with the produced clock signal pulses to detect a data packet.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: June 6, 2017
    Assignee: Analog Devices Global
    Inventors: Muhammad Kalimuddin Khan, Kenneth J. Mulvaney, Philip P. E. Quinlan, Shane O'Mahony
  • Publication number: 20170155414
    Abstract: Provided herein are apparatus and methods for transconductance amplifiers, such as split cascode low-noise transconductance amplifiers (LNTAs). In an embodiment, an LNTA includes split current paths each coupled to a different mixer by way of a different alternating current (AC) coupling capacitor. The split current paths of the LNTA can be enabled during different modes of operation, such as when the input to the LNTA is within different frequency bands.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Sivanendra Selvanayagam, Shane A. O'Mahony, Michael J. Deeney, Niall Kevin Kearney
  • Patent number: 9391578
    Abstract: An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: July 12, 2016
    Assignee: Analog Devices Global
    Inventors: Muhammad Kalimuddin Khan, Michael J. Deeney, Niall Kevin Kearney, Kenneth J. Mulvaney, Shane A. O'Mahony
  • Publication number: 20150365118
    Abstract: An LIF receiver includes a receiver path comprising: a mixer for mixing a received RF signal with a local oscillator signal to provide an IF signal at a lower frequency than the received RF signal, a bandpass filter for filtering the IF signal, a PGA for amplifying the filtered IF signal, an ADC for converting the amplified filtered IF signal to a digital signal, a converter for converting the digital signal to a baseband digital signal, and an AGC for setting a gain of the PGA in response to a magnitude of the received RF signal. A programmable DC signal source injects a programmed DC offset signal into the amplified filtered IF signal converted by the ADC, and a signal sensor, operatively connected to the receiver path after the PGA, determines a polarity of PGA signal output for a programmed DC offset signal. A controller determines a programmed DC offset signal minimizing a magnitude of the baseband signal in the absence of a received RF signal for at least one gain setting of the PGA.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 17, 2015
    Inventors: Muhammad Kalimuddin Khan, Michael J. Deeney, Niall Kevin Kearney, Kenneth J. Mulvaney, Shane A. O'Mahony