Patents by Inventor Shane Bowen

Shane Bowen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180073065
    Abstract: Structured substrate including (a) a plurality of nanoparticles distributed on a solid support, (b) a gel material forming a layer in association with the plurality of nanoparticles, and (c) a library of target nucleic acids in the gel material.
    Type: Application
    Filed: December 23, 2014
    Publication date: March 15, 2018
    Applicant: Illumina, Inc.
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Hui Han, Sang Ryul Park
  • Publication number: 20170335380
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Applicant: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20170274374
    Abstract: An array including a solid support having a plurality of contours along its exterior surface. A first subset of contours is positioned along the exterior surface of the solid support to form a first pattern of features and a second subset of contours is positioned along the exterior surface to form a second pattern of features. The contours of the first subset are juxtaposed with the second subset along the exterior surface, whereby the first and second patterns form an interleaved pattern. The features of the first pattern occur at a first elevation z1 and the features of the second pattern occur at a second elevation z2. The features of the first pattern are configured to attach analytes at a different elevation relative to analytes attached to the features of the second pattern.
    Type: Application
    Filed: March 28, 2017
    Publication date: September 28, 2017
    Inventors: M. Shane Bowen, Michael Graige, Stanley S. Hong, John A. Moon, Merek Siu
  • Patent number: 9758816
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 12, 2017
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20170197193
    Abstract: A microarray is designed capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20170189904
    Abstract: Systems and methods for conducting designated reactions utilizing a base instrument and a removable cartridge. The removable cartridge includes a fluidic network that receives and fluidically directs a biological sample to conduct the designated reactions. The removable cartridge also includes a flow-control valve that is operably coupled to the fluidic network and is movable relative to the fluidic network to control flow of the biological sample therethrough. The removable cartridge is configured to separably engage a base instrument. The base instrument includes a valve actuator that engages the flow-control valve of the removable cartridge. A detection assembly held by at least one of the removable cartridge or the base instrument may be used to detect the designated reactions.
    Type: Application
    Filed: May 27, 2015
    Publication date: July 6, 2017
    Inventors: Alex Aravanis, Boyan Boyanov, M. Shane Bowen, Dale Buermann, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Poorya Sabounchi, Hai Quang Tran
  • Publication number: 20170191126
    Abstract: A method for synthesizing a nucleic acid includes synthesizing one or more nucleic acid fragments on a substrate. The synthesized one or more nucleic acid fragments may be amplified on the substrate. The method also includes sequencing the synthesized or amplified one or more nucleic acid fragments on the substrate. The sequencing may provide feedback to designs of the one or more nucleic acid fragments. The method further includes harvesting the synthesized or amplified one or more nucleic acid fragments based on sequencing. The synthesized or amplified one or more nucleic acid fragments may be assembled to generate a target nucleic acid.
    Type: Application
    Filed: May 14, 2015
    Publication date: July 6, 2017
    Inventors: Mostafa RONAGHI, Molly HE, Cheng-yao CHEN, Michael PREVITE, M. Shane BOWEN
  • Patent number: 9670535
    Abstract: A microarray is designed capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: June 6, 2017
    Assignee: Illumina, Inc.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20170144155
    Abstract: Systems and methods for conducting designated reactions that include a fluidic network having a sample channel, a reaction chamber, and a reservoir. The sample channel is in flow communication with a sample port. The system also includes a rotary valve that has a flow channel and is configured to rotate between first and second valve positions. The flow channel fluidically couples the reaction chamber and the sample channel when the rotary valve is in the first valve position and fluidically couples the reservoir and the reaction chamber when the rotary valve is in the second valve position. A pump assembly induces a flow of a biological sample toward the reaction chamber when the rotary valve is in the first valve position and induces a flow of a reaction component from the reservoir toward the reaction chamber when the rotary valve is in the second valve position.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 25, 2017
    Inventors: Sebastian Bohm, Alex Aravanis, Alexander Hsiao, Behnam Javanmardi, Tarun Khurana, Hai Quang Tran, Majid Aghababazadeh, M. Shane Bowen, Boyan Boyanov, Dale Buermann
  • Publication number: 20170136434
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 18, 2017
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: 9512422
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 6, 2016
    Assignee: Illumina, Inc.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20160246170
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: December 17, 2014
    Publication date: August 25, 2016
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Publication number: 20160199832
    Abstract: Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.
    Type: Application
    Filed: August 29, 2014
    Publication date: July 14, 2016
    Applicant: Advanced Liquid Logic France SAS
    Inventors: Arash Jamshidi, Yan-You Lin, Alex Aravanis, Cyril Delattre, Arnaud Rival, Jennifer Foley, Poorya Sabounchi, Tarun Khurana, Majid Babazadeh, Hamed Amini, Bala Murali Venkatesan, M. Shane Bowen, Steven M. Barnard, Maria Candelaria Rogert Bacigalupo, Dietrich Dehlinger
  • Publication number: 20160053310
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 25, 2016
    Applicant: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 9169513
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 27, 2015
    Assignee: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20150125053
    Abstract: A method of registering features in a repeating pattern can include (a) providing an object having a repeating pattern of features and a fiducial; (b) obtaining a target image of the object, wherein the target image includes the repeating pattern of features and the fiducial; (c) comparing the fiducial in the target image to reference data, wherein the reference data includes xy coordinates for a virtual fiducial; and (d) determining locations for the features in the target image based on the comparison of the virtual fiducial in the reference data to the fiducial in the data from the target image. The fiducial can have at least concentric circles that produce three different signal levels. The locations of the features can be determined at a variance of less than 5 ?m.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Applicant: Illumina, Inc.
    Inventors: John S. Vieceli, Stephen Tanner, John A. Moon, M. Shane Bowen
  • Patent number: 9023638
    Abstract: A plurality of isolated microvessels including a plurality of encoded microvessels each having a microbody and a reservoir core. The microbody is configured to separate a biological or chemical substance in the reservoir core from an ambient environment surrounding the microbody. The microbody includes a transparent material that at least partially surrounds the reservoir core and facilitates detection of an optical characteristic of the substance within the reservoir core. The microbody of each microvessel includes an identifiable code that distinguishes individual microvessels of the plurality of encoded microvessels from each other. The plurality of isolated microvessels also includes a plurality of compartments each configured to separate individual microvessels of the plurality of encoded microvessels from each other.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: May 5, 2015
    Assignee: Illumina, Inc.
    Inventors: John A. Moon, M. Shane Bowen, Ryan C. Smith, Michel Perbost, Michal Lebl, Steven H. Modiano
  • Publication number: 20150080230
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: October 13, 2014
    Publication date: March 19, 2015
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 8895249
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 25, 2014
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20140243224
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: March 6, 2013
    Publication date: August 28, 2014
    Applicant: ILLUMINA, INC.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay