Patents by Inventor Shane C. NEVIL

Shane C. NEVIL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10854425
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: December 1, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Chetan Mahadeswaraswamy, Walter R Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini Pattar, Duy D Nguyen, Tina Tsong, Shane C Nevil, Douglas A Buchberger, Jr., Fernando M Silveira, Brad L Mays, Kartik Ramaswamy, Hamid Noorbakhsh
  • Patent number: 9358702
    Abstract: An unseasoned substrate support assembly includes a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further includes an upper surface of the ceramic body having a first portion proximate to a center of the upper surface of the ceramic body and having a first roughness profile and a second portion distal from the center of the upper surface of the ceramic body and having a second roughness profile with a lower roughness than the first roughness profile, wherein areas of the first and second portions are based on radial distances from the center of the ceramic body.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: June 7, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Sumanth Banda, Jennifer Y. Sun, Douglas A Buchberger, Jr., Shane C. Nevil
  • Publication number: 20160155612
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 2, 2016
    Inventors: Chetan MAHADESWARASWAMY, Walter R. MERRY, Sergio Fukuda SHOJI, Chunlei ZHANG, Yashaswini PATTAR, Duy D. NGUYEN, Tina TSONG, Shane C. NEVIL, Douglas A. BUCHBERGER, JR., Fernando M. SILVEIRA, Brad L. MAYS, Kartik RAMASWAMY, Hamid NOORBAKHSH
  • Patent number: 9338871
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chetan Mahadeswaraswamy, Walter R. Merry, Sergio Fukuda Shoji, Chunlei Zhang, Yashaswini B. Pattar, Duy D. Nguyen, Tina Tsong, Shane C. Nevil, Douglas A. Buchberger, Jr., Fernando M. Silveira, Brad L. Mays, Kartik Ramaswamy, Hamid Noorbakhsh
  • Patent number: 9248509
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: February 2, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hamid Tavassoli, Surajit Kumar, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Patent number: 9214315
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20150316941
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Application
    Filed: December 22, 2014
    Publication date: November 5, 2015
    Inventors: Fernando M. SILVEIRA, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Patent number: 8916793
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 23, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20140346743
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Application
    Filed: July 30, 2014
    Publication date: November 27, 2014
    Inventors: Hamid Tavassoli, Surajit Kumar, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, JR.
  • Patent number: 8822876
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Hamid Tavassoli, Surajit Kumar, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Publication number: 20140203526
    Abstract: An unseasoned substrate support assembly includes a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further includes an upper surface of the ceramic body having a first portion proximate to a center of the upper surface of the ceramic body and having a first roughness profile and a second portion distal from the center of the upper surface of the ceramic body and having a second roughness profile with a lower roughness than the first roughness profile, wherein areas of the first and second portions are based on radial distances from the center of the ceramic body.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 24, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Sumanth Banda, Jennifer Y. Sun, Douglas A. Buchberger, JR., Shane C. Nevil
  • Patent number: 8629370
    Abstract: A triaxial rod assembly for providing both RF power and DC voltage to a chuck assembly that supports a workpiece in a processing chamber during a manufacturing operation. In embodiments, a rod assembly includes a center conductor to be coupled to a chuck electrode for providing DC voltage to clamp a workpiece. Concentrically surrounding the center conductor is an annular RF transmission line to be coupled to an RF powered base to provide RF power to the chuck assembly. An insulator is disposed between the center conductor and RF transmission line. Concentrically surrounding the RF transmission line is a ground plane conductor coupled to a grounded base of the chuck to provide a reference voltage relative to the DC voltage. An insulator is disposed between the RF transmission line and the ground plane conductor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Hamid Tavassoli, Surajit Kumar, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Publication number: 20130284369
    Abstract: Plasma distribution is controlled in a plasma reactor by controlling the phase difference between opposing RF electrodes, in accordance with a desired or user-selected phase difference, by a phase-lock feedback control loop.
    Type: Application
    Filed: October 1, 2012
    Publication date: October 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Satoru Kobayashi, Lawrence Wong, Jonathan Liu, Yang Yang, Kartik Ramaswamy, Shahid Rauf, Shane C. Nevil, Kallol Bera, Kenneth S. Collins
  • Publication number: 20130277333
    Abstract: In a plasma reactor having a driven electrode and a counter electrode, an impedance controller connected between the counter electrode and ground includes both series sand parallel variable impedance elements that facilitate two-dimensional movement of a ground path input impedance in a complex impedance space to control spatial distribution of a plasma process parameter.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Inventors: Nipun Misra, Kartik Ramaswamy, Yang Yang, Douglas A. Buchberger, JR., James D. Carducci, Lawrence Wong, Shane C. Nevil, Shahid Rauf, Kenneth S. Collins
  • Publication number: 20120132397
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. In further embodiments, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a passive leveling pipe coupling the two reservoirs. In another embodiment, digital heat transfer fluid flow control valves are opened with pulse widths dependent on a heating/cooling duty cycle value and a proportioning cycle having a duration that has been found to provide good temperature control performance.
    Type: Application
    Filed: May 19, 2011
    Publication date: May 31, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Fernando M. Silveira, Hamid Tavassoli, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, Brad L. Mays, Tina Tsong, Chetan Mahadeswaraswamy, Yashaswini B. Pattar, Duy D. Nguyen, Walter R. Merry
  • Publication number: 20120091104
    Abstract: An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance.
    Type: Application
    Filed: April 6, 2011
    Publication date: April 19, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hamid Tavassoli, Surajit KUMAR, Kallol Bera, Xiaoping Zhou, Shane C. Nevil, Douglas A. Buchberger, JR.
  • Publication number: 20110297650
    Abstract: A triaxial rod assembly for providing both RF power and DC voltage to a chuck assembly that supports a workpiece in a processing chamber during a manufacturing operation. In embodiments, a rod assembly includes a center conductor to be coupled to a chuck electrode for providing DC voltage to clamp a workpiece. Concentrically surrounding the center conductor is an annular RF transmission line to be coupled to an RF powered base to provide RF power to the chuck assembly. An insulator is disposed between the center conductor and RF transmission line. Concentrically surrounding the RF transmission line is a ground plane conductor coupled to a grounded base of the chuck to provide a reference voltage relative to the DC voltage. An insulator is disposed between the RF transmission line and the ground plane conductor.
    Type: Application
    Filed: April 12, 2011
    Publication date: December 8, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hamid Tavassoli, Surajit Kumar, Shane C. Nevil, Douglas A. Buchberger, JR.
  • Publication number: 20110186545
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber with reduced controller response times and increased stability. Temperature control is based at least in part on a feedforward control signal derived from a plasma power input into the processing chamber. A feedforward control signal compensating disturbances in the temperature attributable to the plasma power may be combined with a feedback control signal counteracting error between a measured and desired temperature.
    Type: Application
    Filed: October 15, 2010
    Publication date: August 4, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Chetan MAHADESWARASWAMY, Walter R. MERRY, Sergio Fukuda SHOJI, Chunlei ZHANG, Yashaswini B. PATTAR, Duy D. NGUYEN, Tina TSONG, Shane C. NEVIL, Douglas A. BUCHBERGER, JR., Fernando M. SILVEIRA, Brad L. MAYS, Kartik RAMASWAMY, Hamid NOORBAKHSH