Patents by Inventor Shane Geary

Shane Geary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280330
    Abstract: Embodiments of the disclosure provide various nanogap sensor designs (e.g., horizontal nanogap sensors, vertical nanogap sensors, arrays of multiple nanogap sensors, various arrangements for making electrical connections to the electrodes of nanogap sensors, etc.), as well as various methods which may be used to fabricate at least some of the proposed sensors. The nanogap sensors proposed herein may operate as molecular sensors to help identify chemical species through electrical measurements using at least a pair of electrodes separated by a nanogap.
    Type: Application
    Filed: April 28, 2023
    Publication date: September 7, 2023
    Inventors: Christophe ANTOINE, Himanshu JAIN, Matthew Thomas CANTY, Christina B. MCLOUGHLIN, Daniel Joseph LUCEY, Sinead Maire MCDERMOTT, Stephen O'BRIEN, Bernard STENSON, Shane GEARY, William Allan LANE, Michael COLN, Mark Daniel de Leon ALEA
  • Patent number: 11740226
    Abstract: Embodiments of the disclosure provide various nanogap sensor designs (e.g., horizontal nanogap sensors, vertical nanogap sensors, arrays of multiple nanogap sensors, various arrangements for making electrical connections to the electrodes of nanogap sensors, etc.), as well as various methods which may be used to fabricate at least some of the proposed sensors. The nanogap sensors proposed herein may operate as molecular sensors to help identify chemical species through electrical measurements using at least a pair of electrodes separated by a nanogap.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 29, 2023
    Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY
    Inventors: Christophe Antoine, Himanshu Jain, Matthew Thomas Canty, Christina B. McLoughlin, Daniel Joseph Lucey, Sinead Maire McDermott, Stephen O'Brien, Bernard Stenson, Shane Geary, William Allan Lane, Michael Coln, Mark De Leon Alea
  • Publication number: 20230125558
    Abstract: Electrochemical sensors (100) include at least two electrodes (110A, HOB), over which an electrolyte (114) is formed. The electrodes are isolated from one another in order for reduction/oxidation reactions to occur at the electrodes and for an electric current to flow therebetween. The present disclosure describes the use of a barrier (121) in the electrochemical sensor that is configured to isolate electrodes from one another for the purpose of preventing electrode shorting. Additionally, the physical structure of the barrier can also act as a stencil for shaping the electrodes.
    Type: Application
    Filed: March 15, 2021
    Publication date: April 27, 2023
    Inventors: Donal McAuliffe, Rizwan Gill, Alfonso Berduque, Shane Geary, Raymond J. Speer
  • Patent number: 11609207
    Abstract: Electrochemical sensors can include at least two electrodes, over which an electrolyte is formed. The electrodes can be isolated from one another in order for reduction/oxidation reactions to occur at the electrodes and for an electric current to flow therebetween. The present disclosure describes the use of a barrier in the electrochemical sensor that is configured to isolate electrodes from one another for the purpose of preventing electrode shorting. Additionally, the physical structure of the barrier can also act as a stencil for shaping the electrodes.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 21, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Donal McAuliffe, Rizwan Gill, Alfonso Berduque, Shane Geary, Raymond J. Speer
  • Publication number: 20220392684
    Abstract: A micro-isolator is described. The micro-isolator may include a first isolator element, a second isolator element, and a first dielectric material separating the first isolator element from the second isolator element. A second dielectric material may completely or partly encapsulate the second isolator element, or may be present at outer corners of the second isolator element. The second dielectric material may have a larger bandgap than the first dielectric material, and its configuration may reduce electrostatic charge injection into the first dielectric material. The micro-isolator may be formed using microfabrication techniques.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Paul Lambkin, Patrick J. Murphy, Bernard Patrick Stenson, Laurence B. O'Sullivan, Stephen O'Brien, Shane Geary, Baoxing Chen, Sombel Diaham
  • Patent number: 11450469
    Abstract: A micro-isolator is described. The micro-isolator may include a first isolator element, a second isolator element, and a first dielectric material separating the first isolator element from the second isolator element. A second dielectric material may completely or partly encapsulate the second isolator element, or may be present at outer corners of the second isolator element. The second dielectric material may have a larger bandgap than the first dielectric material, and its configuration may reduce electrostatic charge injection into the first dielectric material. The micro-isolator may be formed using microfabrication techniques.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: September 20, 2022
    Inventors: Paul Lambkin, Patrick J. Murphy, Bernard Patrick Stenson, Laurence B. O'Sullivan, Stephen O'Brien, Shane Geary, Baoxing Chen, Sombel Diaham
  • Publication number: 20220126300
    Abstract: The present disclosure relates to a microfabricated thermal platform. The platform is formed over a substrate, which may for example be a silicon wafer, and which may form part of the platform. The substrate is coated in a thermally-insulating material, which may be an organic polymer such, as polyimide or SU8. The thermally-insulating material may have a predetermined thermal conductivity, which is dependent on thickness, geometry and processing. The surface of the thermally-insulating material may include an arrangement of thermal sites, with each site having a reaction plate (or thermal plate) over which chemical reactions may occur. A heating element may be positioned beneath each reaction plate. The thermal platform may have a plurality of such thermal sites arranged over the upper surface of the thermally-insulating material. However, it will be appreciated that in practice, there could be a single thermal site.
    Type: Application
    Filed: June 22, 2020
    Publication date: April 28, 2022
    Inventors: Christophe Antoine, Helen Berney, Bernard Stenson, Ramji Sitaraman Lakshmana, William Allan Lane, Himanshu Jain, Christina B. McLoughlin, Shane Geary, Michael C.W. Coln, Donal McAuliffe
  • Publication number: 20210302359
    Abstract: Electrochemical sensors can include at least two electrodes, over which an electrolyte is formed. The electrodes can be isolated from one another in order for reduction/oxidation reactions to occur at the electrodes and for an electric current to flow therebetween. The present disclosure describes the use of a barrier in the electrochemical sensor that is configured to isolate electrodes from one another for the purpose of preventing electrode shorting. Additionally, the physical structure of the barrier can also act as a stencil for shaping the electrodes.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 30, 2021
    Inventors: Donal McAuliffe, Rizwan Gill, Alfonso Berduque, Shane Geary, Raymond J. Speer
  • Patent number: 11044022
    Abstract: Isolators having a back-to-back configuration for providing electrical isolation between two circuits are described, in which multiple isolators formed on a single, monolithic substrate are connected in series to achieve a higher amount of electrical isolation for a single substrate than for isolators formed on separate substrates connected in series. Discrete dielectric regions positioned between isolator components forming an isolator provide electrical isolation between the isolator components as well as between the isolators formed on the substrate. The back-to-back isolator may provide one or more communication channels for transfer of information and/or power between different circuits.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 22, 2021
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Laurence B. O'Sullivan, Shane Geary, Baoxing Chen, Bernard Patrick Stenson, Paul Lambkin, Patrick M. McGuinness, Stephen O'Brien, Patrick J. Murphy
  • Publication number: 20210072304
    Abstract: The disclosed technology relates generally to semiconductor devices, and more particularly to semiconductor devices including a metal-oxide-semiconductor (MOS) transistor and are configured for accelerating and monitoring degradation of the gate dielectric of the MOS transistor. In one aspect, a semiconductor device configured with gate dielectric monitoring capability comprises a metal-oxide-semiconductor (MOS) transistor including a source, a drain, a gate, and a backgate region formed in a semiconductor substrate. The semiconductor device additionally comprises a bipolar junction transistor (BJT) including a collector, a base, and an emitter formed in the semiconductor substrate, wherein the backgate region of the MOS transistor serves as the base of the BJT and is independently accessible for activating the BJT.
    Type: Application
    Filed: August 18, 2020
    Publication date: March 11, 2021
    Inventors: Edward John Coyne, John P. Meskell, Colm Patrick Heffernan, Mark Forde, Shane Geary
  • Publication number: 20210065955
    Abstract: A micro-isolator is described. The micro-isolator may include a first isolator element, a second isolator element, and a first dielectric material separating the first isolator element from the second isolator element. A second dielectric material may completely or partly encapsulate the second isolator element, or may be present at outer corners of the second isolator element. The second dielectric material may have a larger bandgap than the first dielectric material, and its configuration may reduce electrostatic charge injection into the first dielectric material. The micro-isolator may be formed using microfabrication techniques.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Paul Lambkin, Patrick J. Murphy, Bernard Patrick Stenson, Laurence B. O'Sullivan, Stephen O'Brien, Shane Geary, Baoxing Chen, Sombel Diaham
  • Publication number: 20200256842
    Abstract: Embodiments of the disclosure provide various nanogap sensor designs (e.g., horizontal nanogap sensors, vertical nanogap sensors, arrays of multiple nanogap sensors, various arrangements for making electrical connections to the electrodes of nanogap sensors, etc.), as well as various methods which may be used to fabricate at least some of the proposed sensors. The nanogap sensors proposed herein may operate as molecular sensors to help identify chemical species through electrical measurements using at least a pair of electrodes separated by a nanogap.
    Type: Application
    Filed: October 8, 2018
    Publication date: August 13, 2020
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Christophe ANTOINE, Himanshu JAIN, Matthew Thomas CANTY, Christina B. McLOUGHLIN, Daniel Joseph LUCEY, Sinead Maire McDERMOTT, Stephen O'BRIEN, Bernard STENSON, Shane GEARY, William Allan LANE, Michael COLN, Mark De Leon ALEA
  • Publication number: 20200076512
    Abstract: Isolators having a back-to-back configuration for providing electrical isolation between two circuits are described, in which multiple isolators formed on a single, monolithic substrate are connected in series to achieve a higher amount of electrical isolation for a single substrate than for isolators formed on separate substrates connected in series. Discrete dielectric regions positioned between isolator components forming an isolator provide electrical isolation between the isolator components as well as between the isolators formed on the substrate. The back-to-back isolator may provide one or more communication channels for transfer of information and/or power between different circuits.
    Type: Application
    Filed: February 27, 2019
    Publication date: March 5, 2020
    Applicant: Analog Devices Global Unlimited Company
    Inventors: Laurence B. O'Sullivan, Shane Geary, Baoxing Chen, Bernard Patrick Stenson, Paul Lambkin, Patrick M. McGuinness, Stephen O'Brien, Patrick J. Murphy
  • Publication number: 20180190549
    Abstract: A semiconductor wafer is provided that includes at least two integrated circuits (ICs); a scribe line extends adjacent to the at least two ICs; and a first conductor extends within the scribe line and is electrically coupled to the at least two ICs.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: John Jude O'Donnell, Colin G. Lyden, Shane Geary, Jonathan Ephraim David Hurwitz, Brian Beucler
  • Patent number: 9941565
    Abstract: An isolator device and a corresponding method of forming the isolator device to include first and second electrodes, a layer of first dielectric material between the first and second electrodes, and at least one region of second dielectric material between the layer of first dielectric material and at least one of the first and second electrodes. The second dielectric material has a higher relative permittivity than the first dielectric material.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: April 10, 2018
    Assignee: Analog Devices Global
    Inventors: Conor John McLoughlin, Michael John Flynn, Laurence B. O'Sullivan, Shane Geary, Stephen O'Brien, Bernard P. Stenson, Baoxing Chen, Sarah Carroll, Michael Morrissey, Patrick M. McGuinness
  • Publication number: 20170117602
    Abstract: An isolator device and a corresponding method of forming the isolator device to include first and second electrodes, a layer of first dielectric material between the first and second electrodes, and at least one region of second dielectric material between the layer of first dielectric material and at least one of the first and second electrodes. The second dielectric material has a higher relative permittivity than the first dielectric material.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 27, 2017
    Inventors: Conor John McLoughlin, Michael John Flynn, Laurence B. O'Sullivan, Shane Geary, Stephen O'Brien, Bernard P. Stenson, Baoxing Chen, Sarah Carroll, Michael Morrissey, Patrick M. McGuinness
  • Publication number: 20170102355
    Abstract: It may be desirable to sense the concentration of a gas in another gas. This measurement may be important to warn of impending danger. Gas sensors may be made in batches by a manual process, leading to large variations in sensor performance between batches and indeed between sensors in a batch. This means the sensors often need individual calibration before use. The present approach to sensor design can make use of integrated circuit manufacturing techniques to give rise to sensors with well-matched and reproducible characteristics.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Inventors: Patrick M. McGuinness, Seamus P. Whiston, William A. Lane, Thomas G. O'Dwyer, John Jude O'Donnell, Bernard Stenson, Shane Geary, Helen Berney, Raymond J. Speer
  • Publication number: 20100160058
    Abstract: A golf practice apparatus a generally circular disc, said disc having a centrally located opening, said central located opening forming a golf hole and a method of improving one's golf swing by aiming at the apparatus.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 24, 2010
    Inventor: Lloyd Shane Geary
  • Publication number: 20080227559
    Abstract: A golf practice apparatus a generally circular disc, said disc having a centrally located opening, said central located opening forming a golf hole and a method of improving one's golf swing by aiming at the apparatus.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 18, 2008
    Inventor: Lloyd Shane Geary