Patents by Inventor Shane LAVAN

Shane LAVAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11915918
    Abstract: A physical vapor deposition processing chamber is described. The processing chamber includes a target backing plate in a top portion of the processing chamber, a substrate support in a bottom portion of the processing chamber, a deposition ring positioned at an outer periphery of the substrate support and a shield. The substrate support has a support surface spaced a distance from the target backing plate to form a process cavity. The shield forms an outer bound of the process cavity. In-chamber cleaning methods are also described. In an embodiment, the method includes closing a bottom gas flow path of a processing chamber to a process cavity, flowing an inert gas from the bottom gas flow path, flowing a reactant into the process cavity through an opening in the shield, and evacuating the reaction gas from the process cavity.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: February 27, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jothilingam Ramalingam, Yong Cao, Ilya Lavitsky, Keith A. Miller, Tza-Jing Gung, Xianmin Tang, Shane Lavan, Randy D. Schmieding, John C. Forster, Kirankumar Neelasandra Savandaiah
  • Publication number: 20230345846
    Abstract: A superconducting device includes a substrate, a metal oxide or metal oxynitride seed layer on the substrate, and a metal nitride superconductive layer disposed directly on the seed layer. The seed layer is an oxide or oxynitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Application
    Filed: March 1, 2023
    Publication date: October 26, 2023
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20230335393
    Abstract: Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.
    Type: Application
    Filed: June 19, 2023
    Publication date: October 19, 2023
    Inventors: Chunming ZHOU, Jothilingam RAMALINGAM, Yong CAO, Kevin Vincent MORAES, Shane LAVAN
  • Publication number: 20230329125
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate, exposing the seed layer to an oxygen-containing gas or plasma to form a modified seed layer, and after exposing the seed layer to the oxygen-containing gas or plasma depositing a metal nitride superconductive layer directly on the modified seed layer. The seed layer is a nitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Application
    Filed: May 22, 2023
    Publication date: October 12, 2023
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20230187191
    Abstract: Embodiments of process shield for use in process chambers are provided herein. In some embodiments, a process shield for use in a process chamber includes: an annular body having an upper portion and a lower portion extending downward and radially inward from the upper portion, wherein the upper portion includes a plurality of annular trenches on an upper surface thereof and having a plurality of slots disposed therebetween to fluidly couple the plurality of annular trenches, wherein one or more inlets extend from an outer surface of the annular body to an outermost trench of the plurality of annular trenches.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 15, 2023
    Inventors: Kirankumar Neelasandra SAVANDAIAH, Shane LAVAN, Sundarapandian Ramalinga Vijayalakshmi REDDY, Randal Dean SCHMIEDING, Yong CAO
  • Patent number: 11678589
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate, exposing the seed layer to an oxygen-containing gas or plasma to form a modified seed layer, and after exposing the seed layer to the oxygen-containing gas or plasma depositing a metal nitride superconductive layer directly on the modified seed layer. The seed layer is a nitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: June 13, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Patent number: 11600761
    Abstract: A superconducting device includes a substrate, a metal oxide or metal oxynitride seed layer on the substrate, and a metal nitride superconductive layer disposed directly on the seed layer. The seed layer is an oxide or oxynitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: March 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Patent number: 11600477
    Abstract: Embodiments of process shield for use in process chambers are provided herein. In some embodiments, a process shield for use in a process chamber includes: an annular body having an upper portion and a lower portion extending downward and radially inward from the upper portion, wherein the upper portion includes a plurality of annular trenches on an upper surface thereof and having a plurality of slots disposed therebetween to fluidly couple the plurality of annular trenches, wherein one or more inlets extend from an outer surface of the annular body to an outermost trench of the plurality of annular trenches.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kirankumar Neelasandra Savandaiah, Shane Lavan, Sundarapandian Ramalinga Vijayalakshmi Reddy, Randal Dean Schmieding, Yong Cao
  • Patent number: 11572618
    Abstract: A method of depositing a backside film layer on a backside of a substrate includes loading a substrate having one or more films deposited on a front side of the substrate onto a substrate support of a processing chamber, depositing, from the sputter target, a target material on the backside of the substrate to form a backside layer on the backside of the substrate, and applying an RF bias to an electrode disposed within the substrate support while depositing the target material. The front side of the substrate faces the substrate support and is spaced from a top surface of the substrate support, and a backside of the substrate faces a sputter target of the processing chamber.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: February 7, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jothilingam Ramalingam, Xiaozhou Che, Yong Cao, Shane Lavan, Chunming Zhou
  • Publication number: 20220415636
    Abstract: A physical vapor deposition processing chamber is described. The processing chamber includes a target backing plate in a top portion of the processing chamber, a substrate support in a bottom portion of the processing chamber, a deposition ring positioned at an outer periphery of the substrate support and a shield. The substrate support has a support surface spaced a distance from the target backing plate to form a process cavity. The shield forms an outer bound of the process cavity. In-chamber cleaning methods are also described. In an embodiment, the method includes closing a bottom gas flow path of a processing chamber to a process cavity, flowing an inert gas from the bottom gas flow path, flowing a reactant into the process cavity through an opening in the shield, and evacuating the reaction gas from the process cavity.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jothilingam Ramalingam, Yong Cao, Ilya Lavitsky, Keith A. Miller, Tza-Jing Gung, Xianmin Tang, Shane Lavan, Randy D. Schmieding, John C. Forster, Kirankumar Neelasandra Savandaiah
  • Publication number: 20220415637
    Abstract: A physical vapor deposition processing chamber is described. The processing chamber includes a target backing plate in a top portion of the processing chamber, a substrate support in a bottom portion of the processing chamber, a deposition ring positioned at an outer periphery of the substrate support and a shield. The substrate support has a support surface spaced a distance from the target backing plate to form a process cavity. The shield forms an outer bound of the process cavity. In-chamber cleaning methods are also described. In an embodiment, the method includes closing a bottom gas flow path of a processing chamber to a process cavity, flowing an inert gas from the bottom gas flow path, flowing a reactant into the process cavity through an opening in the shield, and evacuating the reaction gas from the process cavity.
    Type: Application
    Filed: July 11, 2022
    Publication date: December 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jothilingam Ramalingam, Yong Cao, Ilya Lavitsky, Keith A. Miller, Tza-Jing Gung, Xianmin Tang, Shane Lavan, Randy D. Schmieding, John C. Forster, Kirankumar Neelasandra Savandaiah
  • Publication number: 20220415649
    Abstract: Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.
    Type: Application
    Filed: September 2, 2022
    Publication date: December 29, 2022
    Inventors: Chunming ZHOU, Jothilingam RAMALINGAM, Yong CAO, Kevin Vincent MORAES, Shane LAVAN
  • Patent number: 11469096
    Abstract: Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Chunming Zhou, Jothilingam Ramalingam, Yong Cao, Kevin Vincent Moraes, Shane Lavan
  • Publication number: 20220301828
    Abstract: Embodiments of methods and apparatus for reducing particle formation in physical vapor deposition (PVD) chambers are provided herein. In some embodiments, a method of reducing particle formation in a PVD chamber includes: performing a plurality of first deposition processes on a corresponding series of substrates disposed on a substrate support in the PVD chamber, wherein the PVD chamber includes a cover ring disposed about the substrate support and having a texturized outer surface, and wherein a silicon nitride (SiN) layer having a first thickness is deposited onto the texturized outer surface during each of the plurality of first deposition processes; and performing a second deposition process on the cover ring between subsets of the plurality of first deposition processes to deposit an amorphous silicon layer having a second thickness onto an underlying silicon nitride (SiN) layer.
    Type: Application
    Filed: March 17, 2021
    Publication date: September 22, 2022
    Inventors: Wei DOU, Yong CAO, Mingdong LI, Shane LAVAN, Jothilingam RAMALINGAM, Chengyu LIU
  • Patent number: 11450514
    Abstract: Embodiments of methods and apparatus for reducing particle formation in physical vapor deposition (PVD) chambers are provided herein. In some embodiments, a method of reducing particle formation in a PVD chamber includes: performing a plurality of first deposition processes on a corresponding series of substrates disposed on a substrate support in the PVD chamber, wherein the PVD chamber includes a cover ring disposed about the substrate support and having a texturized outer surface, and wherein a silicon nitride (SiN) layer having a first thickness is deposited onto the texturized outer surface during each of the plurality of first deposition processes; and performing a second deposition process on the cover ring between subsets of the plurality of first deposition processes to deposit an amorphous silicon layer having a second thickness onto an underlying silicon nitride (SiN) layer.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: September 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Wei Dou, Yong Cao, Mingdong Li, Shane Lavan, Jothilingam Ramalingam, Chengyu Liu
  • Publication number: 20220186361
    Abstract: Embodiments of process shield for use in process chambers are provided herein. In some embodiments, a process shield for use in a process chamber includes: an annular body having an upper portion and a lower portion extending downward and radially inward from the upper portion, wherein the upper portion includes a plurality of annular trenches on an upper surface thereof and having a plurality of slots disposed therebetween to fluidly couple the plurality of annular trenches, wherein one or more inlets extend from an outer surface of the annular body to an outermost trench of the plurality of annular trenches.
    Type: Application
    Filed: December 14, 2020
    Publication date: June 16, 2022
    Inventors: Kirankumar Neelasandra SAVANDAIAH, Shane LAVAN, Sundarapandian Ramalinga Vijayalakshmi REDDY, Randal Dean SCHMIEDING, Yong CAO
  • Publication number: 20220052248
    Abstract: A superconducting device includes a substrate, a metal oxide or metal oxynitride seed layer on the substrate, and a metal nitride superconductive layer disposed directly on the seed layer. The seed layer is an oxide or oxynitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Application
    Filed: February 17, 2021
    Publication date: February 17, 2022
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20220013708
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate at a first temperature, the seed layer being a nitride of a first metal, reducing the temperature of the substrate to a second temperature that is lower than the first temperature, increasing the temperature of the substrate to a third temperature that is higher than the first temperature to form a modified seed layer, and depositing a metal nitride superconductive layer directly on the modified seed layer at the third temperature, the superconductive layer being a nitride of a different second metal.
    Type: Application
    Filed: February 17, 2021
    Publication date: January 13, 2022
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20220013707
    Abstract: A method of fabricating a device including a superconductive layer includes depositing a seed layer on a substrate, exposing the seed layer to an oxygen-containing gas or plasma to form a modified seed layer, and after exposing the seed layer to the oxygen-containing gas or plasma depositing a metal nitride superconductive layer directly on the modified seed layer. The seed layer is a nitride of a first metal, and the superconductive layer is a nitride of a different second metal.
    Type: Application
    Filed: February 17, 2021
    Publication date: January 13, 2022
    Inventors: Zihao Yang, Mingwei Zhu, Shriram Mangipudi, Mohammad Kamruzzaman Chowdhury, Shane Lavan, Zhebo Chen, Yong Cao, Nag B. Patibandla
  • Publication number: 20210062325
    Abstract: A method of depositing a backside film layer on a backside of a substrate includes loading a substrate having one or more films deposited on a front side of the substrate onto a substrate support of a processing chamber, depositing, from the sputter target, a target material on the backside of the substrate to form a backside layer on the backside of the substrate, and applying an RF bias to an electrode disposed within the substrate support while depositing the target material. The front side of the substrate faces the substrate support and is spaced from a top surface of the substrate support, and a backside of the substrate faces a sputter target of the processing chamber.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Inventors: Jothilingam RAMALINGAM, Xiaozhou CHE, Yong CAO, Shane LAVAN, Chunming ZHOU