Patents by Inventor Shane Yang
Shane Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12243267Abstract: A system and computer-implemented method for facilitating a user of a mobile device obtaining image data of damage to a vehicle for damage assessment includes capturing image data of a vehicle with the mobile device. The mobile device may include an orientation model for capturing the image data. The captured image data is analyzed, and a determination is made of the orientations of the images of the captured image data. In addition, a determination is made as to whether the captured image data can be used for the damage assessment. The captured image data may then be transmitted to a damage estimator computing device for estimating an amount of damage to the vehicle.Type: GrantFiled: August 13, 2021Date of Patent: March 4, 2025Assignee: State Farm Mutual Automobile Insurance CompanyInventors: Shane Tomlinson, Jennifer Malia Andrus, Marigona Bokshi-Drotar, Holly Lambert, Daniel J. Green, Michael Bernico, Bradley A. Sliz, He Yang
-
Publication number: 20230218948Abstract: A method of creating a scalable dynamic jointed skeleton (DJS) model for enhancing psychomotor leaning using augmented cognition methods realized by an artificial intelligence (AI) engine or image processor. The method involves extracting a DJS model from either live motion images of video files of an athlete, teacher, or expert to create a scalable reference model for using in training, whereby the AI engine extracts physical attributes of the subject including arm length, length, torso length as well as capturing successive movements of a motor skill such as swinging a gold club including position, stance, club position, swing velocity and acceleration, twisting, and more.Type: ApplicationFiled: March 17, 2023Publication date: July 13, 2023Applicant: Live View Sports, Inc.Inventor: Shane Yang
-
Patent number: 11638853Abstract: A method of creating a scalable dynamic jointed skeleton (DJS) model for enhancing psychomotor leaning using augmented cognition methods realized by an artificial intelligence (AI) engine or image processor. The method involves extracting a DJS model from either live motion images of video files of an athlete, teacher, or expert to create a scalable reference model for using in training, whereby the AI engine extracts physical attributes of the subject including arm length, length, torso length as well as capturing successive movements of a motor skill such as swinging a gold club including position, stance, club position, swing velocity and acceleration, twisting, and more.Type: GrantFiled: January 15, 2020Date of Patent: May 2, 2023Assignee: Live View Sports, Inc.Inventor: Shane Yang
-
Publication number: 20200222757Abstract: A method of creating a scalable dynamic jointed skeleton (DJS) model for enhancing psychomotor leaning using augmented cognition methods realized by an artificial intelligence (AI) engine or image processor. The method involves extracting a DJS model from either live motion images of video files of an athlete, teacher, or expert to create a scalable reference model for using in training, whereby the AI engine extracts physical attributes of the subject including arm length, length, torso length as well as capturing successive movements of a motor skill such as swinging a gold club including position, stance, club position, swing velocity and acceleration, twisting, and more.Type: ApplicationFiled: January 15, 2020Publication date: July 16, 2020Inventor: Shane Yang
-
Publication number: 20180369678Abstract: A portable training system that allows a user to translate an external reference of correct form into an internal reference through use of a video capture device and strategically placed display device. The system may include a camera that streams video of the user to one or more display devices at or near real time. Software on each display device overlays a set of guides onto a display screen to enable the user to see where and how a current form of the user deviates from a desired form, which allows real time adjustments by the user. Templates of guides may be provided to the user instead of the user having to create the guides.Type: ApplicationFiled: June 23, 2017Publication date: December 27, 2018Inventor: Shane Yang
-
Patent number: 8465678Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: GrantFiled: April 1, 2011Date of Patent: June 18, 2013Assignee: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yijun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20110175035Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: ApplicationFiled: April 1, 2011Publication date: July 21, 2011Applicant: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Patent number: 7943062Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: GrantFiled: January 26, 2010Date of Patent: May 17, 2011Assignee: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yijun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20100213451Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: ApplicationFiled: January 26, 2010Publication date: August 26, 2010Applicant: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20100152409Abstract: Triptycene derivatives and method for preparing the same are provided. The triptycene derivatives may be triptycene di-ester of the formula (I) or triptycene di-acid of the formula (II): where n=1-5.Type: ApplicationFiled: December 29, 2008Publication date: June 17, 2010Applicant: TAIWAN TEXTILE RESEARCH INSTITUTEInventors: Chin-Wen Chen, I-Pin Fu, Yu-Chi Tseng, Jye-Shane Yang, Jyu-Lun Yan
-
Patent number: 7662309Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: GrantFiled: October 17, 2005Date of Patent: February 16, 2010Assignee: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yijun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Patent number: 7393503Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: GrantFiled: October 17, 2005Date of Patent: July 1, 2008Assignee: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yijun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Patent number: 7208122Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: GrantFiled: December 18, 2002Date of Patent: April 24, 2007Assignee: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20060120917Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: ApplicationFiled: October 17, 2005Publication date: June 8, 2006Inventors: Timothy Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus Lugmair, Igor Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20060120923Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or ?-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: ApplicationFiled: October 17, 2005Publication date: June 8, 2006Inventors: Timothy Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus Lugmair, Igor Levitsky, Jinsang Kim, Robert Deans
-
Publication number: 20030178607Abstract: The present invention relates to a class of luminescent and conductive polymer compositions having chromophores, and particularly solid films of these compositions exhibiting increased luminescent lifetimes, quantum yields and amplified emissions. These desirable properties can be provided through polymers having rigid groups designed to prevent polymer reorganization, aggregation or &pgr;-stacking upon solidification. These polymers can also display an unusually high stability with respect to solvent and heat exposures. The invention also relates to a sensor and a method for sensing an analyte through the luminescent and conductive properties of these polymers. Analytes can be sensed by activation of a chromophore at a polymer surface. Analytes include aromatics, phosphate ester groups and in particular explosives and chemical warfare agents in a gaseous state.Type: ApplicationFiled: December 18, 2002Publication date: September 25, 2003Applicant: Massachusetts Institute of TechnologyInventors: Timothy M. Swager, Jye-Shane Yang, Vance Williams, Yi-Jun Miao, Claus G. Lugmair, Igor A. Levitsky, Jinsang Kim, Robert Deans