Patents by Inventor Shang Chen

Shang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977013
    Abstract: A viscosity-sensing apparatus includes a ring and sensors. The ring is connected to a pipe of a tank. The sensors are connected to an internal face of the ring at various heights. Sludge travels into the ring from the tank through the pipe. The sensors sense values of viscosity of the sludge at various depths in the ring.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Water & Soil Instrumentation, Inc.
    Inventors: Hsu-Chen Chuang, Shang-Lien Lo
  • Publication number: 20240085295
    Abstract: A viscosity-sensing apparatus includes a ring and sensors. The ring is connected to a pipe of a tank. The sensors are connected to an internal face of the ring at various heights. Sludge travels into the ring from the tank through the pipe. The sensors sense values of viscosity of the sludge at various depths in the ring.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Applicant: Taiwan Water & Soil Instrumentation, Inc.
    Inventors: Hsu-Chen Chuang, Shang-Lien Lo
  • Patent number: 11921434
    Abstract: An apparatus includes a vacuum chamber, a reflective optical element arranged in the vacuum chamber and configured to reflect an extreme ultra-violet (EUV) light, and a cleaning module positioned in the vacuum chamber. the cleaning module is operable to provide a mitigation gas flowing towards the reflective optical element and provide a hydrogen-containing gas flowing towards the reflective optical element. The mitigation gas mitigates, by chemical reaction, contamination of the reflective optical element.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Hao Chang, Norman Chen, Jeng-Horng Chen, Kuo-Chang Kau, Ming-Chin Chien, Shang-Chieh Chien, Anthony Yen, Kevin Huang
  • Publication number: 20230347465
    Abstract: An unloading device and an unloading method for a gantry-type machining center beam guide rail is disclosed, which is used to be installed on a sliding plate assembly, comprising a first booster mechanism and a second booster mechanism. When a worm rotates and drives a worm gear to rotate, an axial displacement can be generated by the worm gear along a worm gear shaft to push the retaining sleeve assembly, and an unloading force generated acts on a first mounting bracket. An unloading bolt of the second booster mechanism is connected with a press plate through threads, the unloading bolt is rotated to generate an axial displacement, and a second sliding block is pressed tightly against an unloading guide rail vertical surface by a second mounting bracket to generate an unloading force.
    Type: Application
    Filed: July 5, 2023
    Publication date: November 2, 2023
    Inventors: Chuanhai Chen, Zhifeng Liu, Jingyan Guo, Shang Chen, Tongtong Jin, Baobao Qi, Zhaojun Yang, Junqi Long, Zhijie Li, Chunlei Hua, Liang Zhang, Haoming Yan
  • Patent number: 11784043
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: October 10, 2023
    Assignee: ASM IP Holding, B.V.
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20230297157
    Abstract: Embodiments of a power consumption control apparatus, a processor, and a power consumption control method are disclosed, directed to improving accuracy of power consumption regulation. The power consumption control apparatus includes a constant-frequency clock generator and a power consumption regulator. The power consumption regulator is connected to one or more processing units in a system-on-a-chip. The constant-frequency clock generator provides a constant-frequency clock signal for the power consumption regulator. The power consumption regulator obtains power consumption caused by the one or more processing units in a period of time, and regulates current power consumption of the one or more processing units based on the power consumption.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Wei JIN, Yipu NIU, Huihui MAO, Shang CHEN, Yufeng YAN
  • Publication number: 20230193132
    Abstract: An etching composition for removing silicon is provided, which comprises: 1 to 5.5 wt % of a quaternary ammonium salt; 20 to 95.5 wt % of an alcohol amine compound; 1 to 40 wt % of an amide compound; and rest of water. In addition, a method for removing silicon using the aforesaid etching composition is also provided.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 22, 2023
    Inventors: Shang-Chen HUANG, Cheng-Huan HSIEH
  • Publication number: 20230149510
    Abstract: Disclosed herein is a method for alleviating arthritis, which includes administering to a subject in need thereof a composition containing epidermal growth factor.
    Type: Application
    Filed: June 29, 2022
    Publication date: May 18, 2023
    Inventors: Le-Shin Chang, Yen-Shuo Chiu, Chi-Chien Lin, Shih-Chao Lin, Shang-Chen Chia
  • Patent number: 11587783
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: February 21, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Publication number: 20220290049
    Abstract: The composition of an etchant is provided. The composition of the etchant includes about 0.1 to 13 wt % quaternary ammonium salt and about 45 to 90 wt % aprotic organic solvent. A method for forming a semiconductor device is provided. The method for forming the semiconductor device includes a step of removing a dummy gate by using an etchant with a composition that includes about 0.1 to 13 wt % quaternary ammonium salt and about 45 to 90 wt % aprotic organic solvent. A semiconductor device is provided. The semiconductor device includes a polycrystalline silicon component having an etched surface that was etched by an etchant with a composition that includes about 0.1 to 13 wt % quaternary ammonium salt and about 45 to 90 wt % aprotic organic solvent. The surface arithmetic mean height of the etched surface is 20 nm or less.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 15, 2022
    Inventors: Shang-Chen HUANG, Cheng-Huan HSIEH
  • Patent number: 11367613
    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: June 21, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Shang Chen, Viljami Pore, Ryoko Yamada, Antti Juhani Niskanen
  • Patent number: 11289327
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: March 29, 2022
    Assignee: ASM IP Holding B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore
  • Publication number: 20220044923
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 10, 2022
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 11133181
    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 28, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Toshiya Suzuki, Viljami J. Pore, Shang Chen, Ryoko Yamada, Dai Ishikawa, Kunitoshi Namba
  • Patent number: 11074975
    Abstract: A non-volatile register is provided. The non-volatile register includes a plurality of cell strings with respect to a plurality of bit lines, wherein each cell string includes a plurality of cells. Each word line is respectively connecting to a gate of one cell for each cell string to correspondingly form a page. The pages are configured into: a central page used as a register to store registered data; and a plurality of dummy pages at both sides of the central page. The dummy pages are controlled to provide a boosted channel voltage to a portion of memory cells of the central page, not being programmed. A source selection transistor is connected to a first side for each cell string. A drain selection transistor is connected to a second side for each cell string.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: July 27, 2021
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chun-Lien Su, Ming-Shang Chen
  • Patent number: 11069522
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: July 20, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Publication number: 20210082684
    Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
    Type: Application
    Filed: November 23, 2020
    Publication date: March 18, 2021
    Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
  • Publication number: 20200365392
    Abstract: Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Inventors: Shang Chen, Viljami Pore, Ryoko Yamada, Antti Juhani Niskanen
  • Patent number: 10793946
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: October 6, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba
  • Publication number: 20200291511
    Abstract: Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on a first metallic surface relative to a second surface comprising silicon. In some embodiments the reaction chamber in which the selective deposition occurs may optionally be passivated prior to carrying out the selective deposition process. In some embodiments selectivity of above about 50% or even about 90% is achieved.
    Type: Application
    Filed: November 6, 2019
    Publication date: September 17, 2020
    Inventors: Delphine Longrie, Antti Juhani Niskanen, Han Wang, Qi Xie, Jan Willem Maes, Shang Chen, Toshiharu Watarai, Takahiro Onuma, Dai Ishikawa, Kunitoshi Namba