Patents by Inventor Shang Hu

Shang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11917734
    Abstract: An example circuit includes a substrate having a plurality of scan lines substantially orthogonal to a virtual centerline of the substrate. The circuit also includes a first driver integrated circuit (IC) on the substrate, the first driver IC including: a set of line switches coupled to a first set of the plurality of scan lines along a side of the first driver IC nearest the virtual centerline; a data output and a register. The circuit also includes a second driver IC on the substrate, the second driver IC including: a set of line switches coupled to a second set of the plurality of scan lines along a side of the second IC nearest the virtual centerline; and a data input coupled to the data output of the first driver IC.
    Type: Grant
    Filed: March 24, 2023
    Date of Patent: February 27, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shang Ding, Huibo Zhong, Bin Hu
  • Patent number: 10833894
    Abstract: The present disclosure provides a hybrid-mode laser drive circuit and an optical emitting system. An equalizer circuit is configured to generate, according to a data signal and a clock signal, an equalization signal for compensating a hybrid-mode laser drive circuit; the hybrid-mode laser drive circuit is connected to an output end of the equalizer circuit, and is configured to generate a corresponding drive signal according to an output signal of the equalizer circuit, so as to drive a light emitting diode to generate a corresponding optical signal; a third current source is connected between a power supply voltage and an output end of the hybrid-mode laser drive circuit; an anode of the light emitting diode is connected to the output end of the hybrid-mode laser drive circuit and a cathode of the light emitting diode is connected to a power supply ground.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: November 10, 2020
    Assignee: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang Hu, Tingyu Yao, Rui Bai, Xuefeng Chen, Pei Jiang
  • Patent number: 10749606
    Abstract: The present disclosure provides a pulse generation module, and an optical communication transmitter system and a non-linear equalizing method thereof, the pulse generation module includes: a mode detector that outputs a corresponding effective detection signal after detecting a preset mode, a controller that generates a corresponding selection signal according to a jump mode, and an equalizing pulse generator that generates a corresponding equalizing pulse signal according to the effective detection signal and the selection signal. A jump mode of each piece of data in a data stream is detected, and a corresponding equalizing pulse signal is generated based on the detected jump mode, to compensate for nonlinearity of a laser driving signal. Information about a rising edge and a falling edge is determined by detecting a jump mode of data, a balanced current is provided for a particular purpose, and nonlinearity of a laser is compensated by current output.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: August 18, 2020
    Assignee: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang Hu, Tingyu Yao, Rui Bai, Xuefeng Chen, Pei Jiang
  • Publication number: 20200059385
    Abstract: The present disclosure provides a hybrid-mode laser drive circuit and an optical emitting system. An equalizer circuit is configured to generate, according to a data signal and a clock signal, an equalization signal for compensating a hybrid-mode laser drive circuit; the hybrid-mode laser drive circuit is connected to an output end of the equalizer circuit, and is configured to generate a corresponding drive signal according to an output signal of the equalizer circuit, so as to drive a light emitting diode to generate a corresponding optical signal; a third current source is connected between a power supply voltage and an output end of the hybrid-mode laser drive circuit; an anode of the light emitting diode is connected to the output end of the hybrid-mode laser drive circuit and a cathode of the light emitting diode is connected to a power supply ground.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Applicant: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang HU, Tingyu YAO, Rui BAI, Xuefeng CHEN, Pei JIANG
  • Publication number: 20200059301
    Abstract: The present disclosure provides a pulse generation module, and an optical communication transmitter system and a non-linear equalizing method thereof, the pulse generation module includes: a mode detector that outputs a corresponding effective detection signal after detecting a preset mode, a controller that generates a corresponding selection signal according to a jump mode, and an equalizing pulse generator that generates a corresponding equalizing pulse signal according to the effective detection signal and the selection signal. A jump mode of each piece of data in a data stream is detected, and a corresponding equalizing pulse signal is generated based on the detected jump mode, to compensate for nonlinearity of a laser driving signal. Information about a rising edge and a falling edge is determined by detecting a jump mode of data, a balanced current is provided for a particular purpose, and nonlinearity of a laser is compensated by current output.
    Type: Application
    Filed: July 4, 2019
    Publication date: February 20, 2020
    Applicant: PhotonIC Technologies (Shanghai) Co., Ltd.
    Inventors: Shang HU, Tingyu YAO, Rui BAI, Xuefeng CHEN, Pei JIANG
  • Patent number: 10523412
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 31, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Patent number: 10523414
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 31, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Patent number: 10523413
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 31, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Patent number: 10511432
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 17, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Patent number: 10491368
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: November 26, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Patent number: 10461921
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: October 29, 2019
    Assignee: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190253234
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 15, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190253157
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 15, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190245678
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190243408
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190245676
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang
  • Publication number: 20190243409
    Abstract: An apparatus comprises a plurality of sampling circuits configured to receive a non-Non Return to Zero (non-NRZ) data signal; and a control circuit coupled to the plurality of sampling circuits, wherein the control circuit is configured to provide one or more control signals indicating whether to decrease or increase a frequency of a clock signal associated with the non-NRZ data signal based on the non-NRZ data signal.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Applicant: PHOTONIC TECHNOLOGIES (SHANGHAI) CO., LTD.
    Inventors: Rui Bai, Xuefeng Chen, Wenzong Pan, Xin Wang, Tao Xia, Shang Hu, Zhichun Wang, Yuanxi Zhang, Wenjun He, Juncheng Wang, Patrick Yin Chiang