Patents by Inventor Shang-Jr Chen

Shang-Jr Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180122705
    Abstract: First, a substrate having a first region and a second region is provided, a first gate structure is formed on the first region and a second gate structure is formed on the second region, an interlayer dielectric (ILD) layer is formed around the first gate structure and the second gate structure, and the first gate structure and the second gate structure are removed to expose the substrate on the first region and the second region. Next, part of the substrate on the first region is removed to form a first recess and part of the substrate on the second region is removed to form a second recess, in which the depths of the first recess and the second recess are different. Next, a first metal gate is formed on the first region and a second metal gate is formed on the second region.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Tai-You Chen, Cheng-Guo Chen, Kun-Yuan Wu, Chiu-Sheng Ho, Po-Kang Yang, Ta-Kang Lo, Shang-Jr Chen
  • Patent number: 9960083
    Abstract: First, a substrate having a first region and a second region is provided, a first gate structure is formed on the first region and a second gate structure is formed on the second region, an interlayer dielectric (ILD) layer is formed around the first gate structure and the second gate structure, and the first gate structure and the second gate structure are removed to expose the substrate on the first region and the second region. Next, part of the substrate on the first region is removed to form a first recess and part of the substrate on the second region is removed to form a second recess, in which the depths of the first recess and the second recess are different. Next, a first metal gate is formed on the first region and a second metal gate is formed on the second region.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: May 1, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-You Chen, Cheng-Guo Chen, Kun-Yuan Wu, Chiu-Sheng Ho, Po-Kang Yang, Ta-Kang Lo, Shang-Jr Chen
  • Patent number: 9779998
    Abstract: A method of manufacturing a semiconductor device is provided in the present invention. Multiple spacer layers are used in the invention to form spacers with different predetermined thickness on different active regions or devices, thus the spacing between the strained silicon structure and the gate structure (SiGe-to-Gate) can be properly controlled and adjusted to achieve better and more uniform performance for various devices and circuit layouts.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: October 3, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chen Tsai, Hung-Chang Chang, Ta-Kang Lo, Tsai-Fu Chen, Shang-Jr Chen
  • Publication number: 20170221766
    Abstract: A method of manufacturing a semiconductor device is provided in the present invention. Multiple spacer layers are used in the invention to form spacers with different predetermined thickness on different active regions or devices, thus the spacing between the strained silicon structure and the gate structure (SiGe-to-Gate) can be properly controlled and adjusted to achieve better and more uniform performance for various devices and circuit layouts.
    Type: Application
    Filed: March 6, 2017
    Publication date: August 3, 2017
    Inventors: Chia-Chen Tsai, Hung-Chang Chang, Ta-Kang Lo, Tsai-Fu Chen, Shang-Jr Chen
  • Patent number: 9685520
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A first gate dielectric layer is formed in a first gate trench and a second gate dielectric layer is formed in a second gate trench. A first bottom barrier layer is formed on the first gate dielectric layer and the second gate dielectric layer. A first conductivity type work function layer is formed on the first bottom barrier layer. A first treatment to the first gate dielectric layer and/or a second treatment to the first bottom barrier layer on the first gate dielectric layer are performed before the step of forming the first conductivity type work function layer. The first treatment and the second treatment are used to modify threshold voltages of specific transistors, and thicknesses of work function layers formed subsequently may be modified for increasing the related process window accordingly.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 20, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shuo-Lin Hsu, Hsin-Ta Hsieh, Chun-Chia Chen, Chen-Chien Li, Hung-Chang Chang, Ta-Kang Lo, Tsai-Fu Chen, Shang-Jr Chen
  • Patent number: 9634002
    Abstract: A semiconductor device and method of manufacturing the same are provided in the present invention. Multiple spacer layers are used in the invention to form spacers with different predetermined thickness on different active regions or devices, thus the spacing between the strained silicon structure and the gate structure (SiGe-to-Gate) can be properly controlled and adjusted to achieve better and more uniform performance for various devices and circuit layouts.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: April 25, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chen Tsai, Hung-Chang Chang, Ta-Kang Lo, Tsai-Fu Chen, Shang-Jr Chen
  • Patent number: 6746883
    Abstract: A low leakage charge pumping (CP) method has been implemented for direct determination of interface traps in ultra-short gate length MOS devices with ultra-thin gate oxide in the direct tunneling regime. The leakage current in a 12 Å-16 Å gate oxide can be removed from the measured CP current, which enables accurate determination of the interface traps. This method has been demonstrated successfully for variousRTNO grown and RPN treated oxide CMOS devices with very thin gate oxide. It can be used as a good monitor of ultra-thin gate oxide process and the evaluations of device reliabilities in relation to the interface trap generation. In addition, the current method can be used to determine the physical channel length of CMOS devices.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: June 8, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Steve S. Chung, Shang-Jr Chen, Chien-Kuo Yang, Der-Yuan Wu
  • Publication number: 20030224545
    Abstract: A low leakage charge pumping (CP) method has been implemented for direct determination of interface traps in ultra-short gate length MOS devices with ultra-thin gate oxide in the direct tunneling regime. The leakage current in a 12 Å-16 Å gate oxide can be removed from the measured CP current, which enables accurate determination of the interface traps. This method has been demonstrated successfully for various RTNO grown and RPN treated oxide CMOS devices with very thin gate oxide. It can be used as a good monitor of ultra-thin gate oxide process and the evaluations of device reliabilities in relation to the interface trap generation. In addition, the current method can be used to determine the physical channel length of CMOS devices.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Inventors: Steve S. Chung, Shang-Jr Chen, Chien-Kuo Yang, Der-Yuan Wu