Patents by Inventor Shang-Ting Tsai

Shang-Ting Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20210220491
    Abstract: This invention provides an imaging method for detecting a volume of animal or human to obtain a fluorescence image of the volume. The method comprises steps of: treating the animal or human with an dosage form containing a dye encapsulated by a polymer; irradiating the volume of the animal or human by a light, and detecting a single photon, two- or multi-photon fluorescence emission light from the illuminated volume to obtain a fluorescence image, wherein a peak wavelength of the single photon fluorescence emission light of the dosage form is equal to or greater than 780 nm, or a peak wavelength of the two or multi-photon fluorescence emission light of the dosage form is equal to or greater than 800 nm. This invention further provides an imaging system employing the foregoing imaging method.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 22, 2021
    Inventors: Ming-Fa Hsieh, Shang-Ting Tsai, Tzu-Chau Lin, Wen-Tyng Li, Tzong-Rong Ger, Shyh-Chuan Jwo
  • Patent number: 10796788
    Abstract: This invention discloses a method for constructing a set of database of one or more saccharides, a logical procedure for automatic determination of sequential mass spectra, and a method, program and system for determination the structures of oligosaccharides and glycoconjugates by the set of database. In one aspect, the sequential mass spectra measured by the method, program or system of the invention maybe instructed according to the logical procedure automatically or manually determined. By comparing the sequential mass spectra to the set of database, the structure of the carbohydrate comprising linkage position, anomeric configuration, composed monosaccharide and branch location of the carbohydrate sample can be identified. In another aspect, the method, program may be used to control one or more mass spectrometer automatically or manually.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: October 6, 2020
    Assignee: Academia Sinica
    Inventors: Chi-Kung Ni, Shang-Ting Tsai, Hsu-Chen Hsu, Chia-Yen Liew, Shih-Pei Huang
  • Publication number: 20180365387
    Abstract: This invention discloses a method for constructing a set of database of one or more saccharides, a logical procedure for automatic determination of sequential mass spectra, and a method, program and system for determination the structures of oligosaccharides and glycoconjugates by the set of database. In one aspect, the sequential mass spectra measured by the method, program or system of the invention maybe instructed according to the logical procedure automatically or manually determined. By comparing the sequential mass spectra to the set of database, the structure of the carbohydrate comprising linkage position, anomeric configuration, composed monosaccharide and branch location of the carbohydrate sample can be identified. In another aspect, the method, program may be used to control one or more mass spectrometer automatically or manually.
    Type: Application
    Filed: June 18, 2018
    Publication date: December 20, 2018
    Inventors: Chi-Kung NI, Shang-Ting TSAI, Hsu-Chen HSU, Chia-Yen LIEW, Shih-Pei HUANG
  • Patent number: 7714299
    Abstract: A particle detector for detecting a particle beam includes a negatively charged electrode plate having a first side facing the particle beam, a second side opposite to the first side, and a through-hole extending from the first side to the second side for receiving the particle beam. A detection device adjacent to the second side of the electrode plate detects signals corresponding to the particle beam approaching the through-hole.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: May 11, 2010
    Assignee: Academia Sinica
    Inventors: Yi-Sheng Wang, Shang-Ting Tsai
  • Patent number: 7649170
    Abstract: A dual-polarity mass spectrometer includes an ion source, a negative ion mass analyzer, and a positive ion mass analyzer to measure both the negative and positive ion spectra of a sample material simultaneously. The ion source includes a sample surface on which the sample material is positioned, the sample material providing positive ions and negative ions when excited by a laser beam or an energetic particle stream. A first extraction electrode is connected to a voltage higher than the sample surface to attract the negative ions from the sample electrode. A second extraction electrode is connected to a voltage lower than the sample surface to attract the positive ions from the sample electrode. The negative and positive ions are analyzed simultaneously by the negative ion mass analyzer and the positive ion mass analyzer, respectively.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 19, 2010
    Assignee: Academia Sinica
    Inventors: Yi-Sheng Wang, Chung-Hsuan Chen, Shang-Ting Tsai, Chiu Wen Chen
  • Publication number: 20080078928
    Abstract: A dual-polarity mass spectrometer includes an ion source, a negative ion mass analyzer, and a positive ion mass analyzer to measure both the negative and positive ion spectra of a sample material simultaneously. The ion source includes a sample surface on which the sample material is positioned, the sample material providing positive ions and negative ions when excited by a laser beam or an energetic particle stream. A first extraction electrode is connected to a voltage higher than the sample surface to attract the negative ions from the sample electrode. A second extraction electrode is connected to a voltage lower than the sample surface to attract the positive ions from the sample electrode. The negative and positive ions are analyzed simultaneously by the negative ion mass analyzer and the positive ion mass analyzer, respectively.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Yi-Sheng Wang, Chung-Hsuan Chen, Shang-Ting Tsai, Chiu Wen Chen
  • Publication number: 20080035855
    Abstract: A particle detector for detecting a particle beam includes a negatively charged electrode plate having a first side facing the particle beam, a second side opposite to the first side, and a through-hole extending from the first side to the second side for receiving the particle beam. A detection device adjacent to the second side of the electrode plate detects signals corresponding to the particle beam approaching the through-hole.
    Type: Application
    Filed: August 8, 2006
    Publication date: February 14, 2008
    Applicant: Academia Sinica
    Inventors: Yi-Sheng Wang, Shang-Ting Tsai
  • Patent number: 7125521
    Abstract: A method of unblinding an alignment mark comprising the following steps. A substrate having a cell area and an alignment mark within an alignment area is provided. An STI trench is formed into the substrate within the cell area. A silicon oxide layer is formed over the substrate, filling the STI trench and the alignment mark. The silicon oxide layer is planarized to form a planarized STI within the STI trench and leaving silicon oxide within the alignment mark to form a blinded alignment mark. A wet chemical etchant is applied within the alignment mark area over the blinded alignment mark to at least partially remove the silicon oxide within the alignment mark. The remaining silicon oxide is removed from within the blinded alignment mark to unblind the alignment mark. A drop etcher apparatus is also disclosed.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: October 24, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, Jui-Cheng Lo, Shang-Ting Tsai, Yu-Liang Lin
  • Publication number: 20050202763
    Abstract: A method and system for delivering a mixed slurry for use chemical mechanical polishing operation. A first slurry may be mixed with a second slurry to provide a mixed slurry thereof. A flow rate and a mixing ratio associated with the mixed slurry can be controlled to provide an accurate flow rate control and adjustable mixing ratio thereof. The first slurry and the second slurry may be mixed in-line utilizing an in-line mixing mechanism to provide a mixed slurry thereof. Alternatively, the first and second slurries may be pre-mixed utilizing a pre-mixing mechanism to provide a mixed slurry there.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 15, 2005
    Inventors: Ping-Hsu Chen, Chao-Jung Chang, Jui-Cheng Lo, Yu-Liang Lin, Shang-Ting Tsai, Ping Chuang
  • Patent number: 6884149
    Abstract: A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: April 26, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shang-Ting Tsai, Ping Chuang, Henry Lo, Chao-Jung Chang, Ping-Hsu Chen, Yu-Liang Lin, Yu-Huei Chen, Ai-Sen Liu, Syun-Ming Jang
  • Publication number: 20040203322
    Abstract: A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 14, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shang-Ting Tsai, Ping Chuang, Henry Lo, Chao-Jung Chang, Ping-Hsu Chen, Yu-Liang Lin, Yu-Huei Chen, Ai-Sen Liu, Syun-Ming Jang
  • Publication number: 20040198017
    Abstract: A method of unblinding an alignment mark comprising the following steps. A substrate having a cell area and an alignment mark within an alignment area is provided. An STI trench is formed into the substrate within the cell area. A silicon oxide layer is formed over the substrate, filling the STI trench and the alignment mark. The silicon oxide layer is planarized to form a planarized STI within the STI trench and leaving silicon oxide within the alignment mark to form a blinded alignment mark. A wet chemical etchant is applied within the alignment mark area over the blinded alignment mark to at least partially remove the silicon oxide within the alignment mark. The remaining silicon oxide is removed from within the blinded alignment mark to unblind the alignment mark. A drop etcher apparatus is also disclosed.
    Type: Application
    Filed: April 26, 2004
    Publication date: October 7, 2004
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chung-Long Chang, Henry Lo, Shang-Ting Tsai, Yu-Liang Lin
  • Patent number: 6746966
    Abstract: A method of unblinding an alignment mark comprising the following steps. A substrate having a cell area and an alignment mark within an alignment area is provided. An STI trench is formed into the substrate within the cell area. A silicon oxide layer is formed over the substrate, filling the STI trench and the alignment mark. The silicon oxide layer is planarized to form a planarized STI within the STI trench and leaving silicon oxide within the alignment mark to form a blinded alignment mark. A wet chemical etchant is applied within the alignment mark area over the blinded alignment mark to at least partially remove the silicon oxide within the alignment mark. The remaining silicon oxide is removed from within the blinded alignment mark to unblind the alignment mark. A drop etcher apparatus is also disclosed.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: June 8, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chung-Long Chang, Henry Lo, Shang-Ting Tsai, Yu-Liang Lin
  • Patent number: 6729935
    Abstract: A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 4, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shang-Ting Tsai, Ping Chuang, Henry Lo, Chao-Jung Chang, Ping-Hsu Chen, Yu-Liang Lin, Yu-Huei Chen, Ai-Sen Liu, Syun-Ming Jang
  • Publication number: 20030232575
    Abstract: A method and system for monitoring the quality of a slurry utilized in a chemical mechanical polishing operation. A slurry is generally delivered through a tubular path during a chemical mechanical polishing operation. A laser light is generally transmitted from a laser light source, such that the laser light comes into contact with the slurry during the chemical mechanical polishing operation. The laser light can then be detected, after the laser light comes into contact with the slurry to thereby monitor the quality of the slurry utilized during the chemical mechanical polishing operation. The laser light that comes into contact with the slurry can be also be utilized to monitor a mixing ratio associated with the slurry.
    Type: Application
    Filed: June 13, 2002
    Publication date: December 18, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shang-Ting Tsai, Ping Chuang, Henry Lo, Chao-Jung Chang, Ping-Hsu Chen, Yu-Liang Lin, Yu-Huei Chen, Ai-Sen Liu, Syun-Ming Jang