Patents by Inventor Shang-Yuan Tsai
Shang-Yuan Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9799550Abstract: The present invention provides a method for forming an opening, including: first, a hard mask material layer is formed on a target layer, next, a tri-layer hard mask is formed on the hard mask material layer, where the tri-layer hard mask includes an bottom organic layer (ODL), a middle silicon-containing hard mask bottom anti-reflection coating (SHB) layer and a top photoresist layer, and an etching process is then performed, to remove parts of the tri-layer hard mask, parts of the hard mask material layer and parts of the target layer in sequence, so as to form at least one opening in the target layer, where during the step for removing parts of the hard mask material layer, a lateral etching rate of the hard mask material layer is smaller than a lateral etching rate of the ODL.Type: GrantFiled: September 4, 2015Date of Patent: October 24, 2017Assignee: UNITED MICROELECTRONICS CORP.Inventors: Wei-Hao Huang, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Feng-Yi Chang, Chieh-Te Chen, Shang-Yuan Tsai
-
Publication number: 20170069528Abstract: The present invention provides a method for forming an opening, including: first, a hard mask material layer is formed on a target layer, next, a tri-layer hard mask is formed on the hard mask material layer, where the tri-layer hard mask includes an bottom organic layer (ODL), a middle silicon-containing hard mask bottom anti-reflection coating (SHB) layer and a top photoresist layer, and an etching process is then performed, to remove parts of the tri-layer hard mask, parts of the hard mask material layer and parts of the target layer in sequence, so as to form at least one opening in the target layer, where during the step for removing parts of the hard mask material layer, a lateral etching rate of the hard mask material layer is smaller than a lateral etching rate of the ODL.Type: ApplicationFiled: September 4, 2015Publication date: March 9, 2017Inventors: Wei-Hao Huang, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Feng-Yi Chang, Chieh-Te Chen, Shang-Yuan Tsai
-
Patent number: 9337084Abstract: The present invention provides a method for manufacturing contact holes of a semiconductor device, including a first dielectric layer is provided, a first region and a second region are defined on the first dielectric layer respectively, at least two cutting hard masks are formed and disposed within the first region and the second region respectively, at least two step-height portions disposed right under the cutting hard masks respectively. Afterwards, at least one first slot opening within the first region is formed, where the first slot opening partially overlaps the cutting hard mask and directly contacts the cutting hard mask, and at least one second contact opening is formed within the second region, where the second contact opening does not contact the cutting hard mask directly, and at least two contact holes are formed, where each contact hole penetrates through each step height portion.Type: GrantFiled: September 6, 2015Date of Patent: May 10, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chieh-Te Chen, Feng-Yi Chang, Kun-Yuan Liao, Chun-Lung Chen, Ching-Pin Hsu, Shang-Yuan Tsai
-
Patent number: 9196524Abstract: A manufacturing method of a semiconductor device is disclosed in the present invention. First, at least one gate structure and plurality of source/drain regions on a substrate are formed, a dielectric layer is then formed on the substrate, a first contact hole and a second contact hole are formed in the dielectric layer, respectively on the gate structure and the source/drain region, and a third contact hole is formed in the dielectric layer, wherein the third contact hole overlaps the first contact hole and the second contact hole.Type: GrantFiled: September 10, 2012Date of Patent: November 24, 2015Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chieh-Te Chen, Yi-Po Lin, Jiunn-Hsiung Liao, Feng-Yi Chang, Shang-Yuan Tsai
-
Patent number: 9023708Abstract: A method of forming a semiconductor device is provided. At least one gate structure including a dummy gate is formed on a substrate. A contact etch stop layer and a dielectric layer are formed to cover the gate structure. A portion of the contact etch stop layer and a portion of the dielectric layer are removed to expose the top of the gate structure. A dry etching process is performed to remove a portion of the dummy gate of the gate structure. A hydrogenation treatment is performed to the surface of the remaining dummy gate. A wet etching process is performed to remove the remaining dummy gate and thereby form a gate trench.Type: GrantFiled: April 19, 2013Date of Patent: May 5, 2015Assignee: United Microelectronics Corp.Inventors: Li-Chiang Chen, Jiunn-Hsiung Liao, Hsuan-Hsu Chen, Feng-Yi Chang, Chieh-Te Chen, Shang-Yuan Tsai, Ching-Pin Hsu
-
Publication number: 20140315365Abstract: A method of forming a semiconductor device is provided. At least one gate structure including a dummy gate is formed on a substrate. A contact etch stop layer and a dielectric layer are formed to cover the gate structure. A portion of the contact etch stop layer and a portion of the dielectric layer are removed to expose the top of the gate structure. A dry etching process is performed to remove a portion of the dummy gate of the gate structure. A hydrogenation treatment is performed to the surface of the remaining dummy gate. A wet etching process is performed to remove the remaining dummy gate and thereby form a gate trench.Type: ApplicationFiled: April 19, 2013Publication date: October 23, 2014Applicant: United Microelectronics Corp.Inventors: Li-Chiang Chen, Jiunn-Hsiung Liao, Hsuan-Hsu Chen, Feng-Yi Chang, Chieh-Te Chen, Shang-Yuan Tsai, Ching-Pin Hsu
-
Patent number: 8835324Abstract: In an exemplary method for forming contact holes, a substrate overlaid with an etching stop layer and an interlayer dielectric layer in that order is firstly provided. A first etching process then is performed to form at least a first contact opening in the interlayer dielectric layer. A first carbon-containing dielectric layer subsequently is formed overlying the interlayer dielectric layer and filling into the first contact opening. After that, a first anti-reflective layer and a first patterned photo resist layer are sequentially formed in that order overlying the carbon-containing dielectric layer. Next, a second etching process is performed by using the first patterned photo resist layer as an etching mask to form at least a second contact opening in the interlayer dielectric layer.Type: GrantFiled: July 1, 2011Date of Patent: September 16, 2014Assignee: United Microelectronics Corp.Inventors: Chieh-Te Chen, Yi-Po Lin, Feng-Yih Chang, Chih-Wen Feng, Shang-Yuan Tsai
-
Patent number: 8691659Abstract: A method for forming a dielectric layer free of voids is disclosed. First, a substrate, a first stressed layer including a recess, a second stressed layer disposed on the first stressed layer and covering the recess and a patterned photoresist embedded in the recess are provided. Second, a first etching step is performed to totally remove the photoresist so that the remaining second stressed layer forms at least one protrusion adjacent to the recess. Then, a trimming photoresist is formed without exposure to fill the recess and to cover the protrusion. Later, a trimming etching step is performed to eliminate the protrusion and to collaterally remove the trimming photoresist.Type: GrantFiled: October 26, 2011Date of Patent: April 8, 2014Assignee: United Microelectronics Corp.Inventors: Ching-Pin Hsu, Yi-Po Lin, Jiunn-Hsiung Liao, Chieh-Te Chen, Feng-Yi Chang, Shang-Yuan Tsai, Li-Chiang Chen
-
Publication number: 20140073104Abstract: A manufacturing method of a semiconductor device is disclosed in the present invention. First, at least one gate structure and plurality of source/drain regions on a substrate are formed, a dielectric layer is then formed on the substrate, a first contact hole and a second contact hole are formed in the dielectric layer, respectively on the gate structure and the source/drain region, and a third contact hole is formed in the dielectric layer, wherein the third contact hole overlaps the first contact hole and the second contact hole.Type: ApplicationFiled: September 10, 2012Publication date: March 13, 2014Inventors: Chieh-Te Chen, Yi-Po Lin, Jiunn-Hsiung Liao, Feng-Yi Chang, Shang-Yuan Tsai
-
Publication number: 20140038399Abstract: A method for fabricating an aperture is disclosed. The method includes the steps of: forming a hard mask containing carbon on a surface of a semiconductor substrate; and using a non-oxygen element containing gas to perform a first etching process for forming a first aperture in the hard mask. Before forming the hard mask, a gate which includes a contact etch stop layer and a dielectric layer is formed on the semiconductor substrate.Type: ApplicationFiled: October 16, 2013Publication date: February 6, 2014Applicant: UNITED MICROELECTRONICS CORP.Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
-
Patent number: 8592321Abstract: A method for fabricating an aperture is disclosed. The method includes the steps of: forming a hard mask containing carbon on a surface of a semiconductor substrate; and using a non-oxygen element containing gas to perform a first etching process for forming a first aperture in the hard mask.Type: GrantFiled: June 8, 2011Date of Patent: November 26, 2013Assignee: United Microelectronics Corp.Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
-
Patent number: 8574990Abstract: The present invention provides a method of manufacturing semiconductor device having metal gate. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench and then a first metal layer and a first material layer are formed in the first trench. Next, the first metal layer and the first material layer are flattened. The second sacrifice gate is removed to form a second trench and then a second metal layer and a second material layer are formed in the second trench. Lastly, the second metal layer and the second material layer are flattened.Type: GrantFiled: February 24, 2011Date of Patent: November 5, 2013Assignee: United Microelectronics Corp.Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Shui-Yen Lu, Pei-Yu Chou, Shin-Chi Chen, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chan-Lon Yang, Teng-Chun Tsai, Chun-Hsien Lin
-
Publication number: 20130109151Abstract: A method for forming a dielectric layer free of voids is disclosed. First, a substrate, a first stressed layer including a recess, a second stressed layer disposed on the first stressed layer and covering the recess and a patterned photoresist embedded in the recess are provided. Second, a first etching step is performed to totally remove the photoresist so that the remaining second stressed layer forms at least one protrusion adjacent to the recess. Then, a trimming photoresist is formed without exposure to fill the recess and to cover the protrusion. Later, a trimming etching step is performed to eliminate the protrusion and to collaterally remove the trimming photoresist.Type: ApplicationFiled: October 26, 2011Publication date: May 2, 2013Inventors: Ching-Pin Hsu, Yi-Po Lin, Jiunn-Hsiung Liao, Chieh-Te Chen, Feng-Yi Chang, Shang-Yuan Tsai, Li-Chiang Chen
-
Publication number: 20130005151Abstract: In an exemplary method for forming contact holes, a substrate overlaid with an etching stop layer and an interlayer dielectric layer in that order is firstly provided. A first etching process then is performed to form at least a first contact opening in the interlayer dielectric layer. A first carbon-containing dielectric layer subsequently is formed overlying the interlayer dielectric layer and filling into the first contact opening. After that, a first anti-reflective layer and a first patterned photo resist layer are sequentially formed in that order overlying the carbon-containing dielectric layer. Next, a second etching process is performed by using the first patterned photo resist layer as an etching mask to form at least a second contact opening in the interlayer dielectric layer.Type: ApplicationFiled: July 1, 2011Publication date: January 3, 2013Applicant: UNITED MICROELECTRONICS CORP.Inventors: Chieh-Te CHEN, Yi-Po Lin, Feng-Yih Chang, Chih-Wen Feng, Shang-Yuan Tsai
-
Publication number: 20120315748Abstract: A method for fabricating an aperture is disclosed. The method includes the steps of: forming a hard mask containing carbon on a surface of a semiconductor substrate; and using a non-oxygen element containing gas to perform a first etching process for forming a first aperture in the hard mask.Type: ApplicationFiled: June 8, 2011Publication date: December 13, 2012Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
-
Publication number: 20120220113Abstract: The present invention provides a method of manufacturing semiconductor device having metal gate. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench and then a first metal layer and a first material layer are formed in the first trench. Next, the first metal layer and the first material layer are flattened. The second sacrifice gate is removed to form a second trench and then a second metal layer and a second material layer are formed in the second trench. Lastly, the second metal layer and the second material layer are flattened.Type: ApplicationFiled: February 24, 2011Publication date: August 30, 2012Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Shui-Yen Lu, Pei-Yu Chou, Shin-Chi Chen, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chan-Lon Yang, Teng-Chun Tsai, Chun-Hsien Lin
-
Patent number: 8252650Abstract: A method for fabricating MOS transistor includes the steps of: overlapping a second stress layer on an etching stop layer and a first stress layer at a boundary region of the substrate; forming a dielectric layer on the first stress layer and the second stress layer; performing a first etching process to partially remove the dielectric layer for exposing a portion of the second stress layer at the boundary region; performing a second etching process to partially remove the exposed portion of the second stress layer for exposing the etching stop layer; performing a third etching process to partially remove the exposed portion of the etching stop layer for exposing the first stress layer at the boundary region; and performing a fourth etching process partially remove the exposed portion of the first stress layer.Type: GrantFiled: April 22, 2011Date of Patent: August 28, 2012Assignee: United Microelectronics Corp.Inventors: Feng-Yi Chang, Yi-Po Lin, Jiunn-Hsiung Liao, Shang-Yuan Tsai, Chih-Wen Feng, Shui-Yen Lu, Ching-Pin Hsu
-
Publication number: 20110223768Abstract: A method for forming contact openings is provided. First, a semiconductor device is formed on a substrate. Next, an etching stop layer, a first dielectric layer and a patterned photoresist layer are sequentially formed on the substrate. Next a portion of the first dielectric layer and a portion of the etching stop layer are removed to form an opening, wherein the portion of the first dielectric layer and the portion of the etching stop layer are not covered by the patterned photoresist layer. Next, the patterned photoresist layer is removed. Next, an over etching process is performed to remove the etching stop layer at a bottom of the opening and expose the semiconductor device in a nitrogen-free environment. The reactant gas of the over etching process includes fluorine-containing hydrocarbons, hydrogen gas and argon gas.Type: ApplicationFiled: March 10, 2010Publication date: September 15, 2011Inventors: Ying-Chih LIN, Pei-Yu Chou, Jiunn-Hsiung Liao, Feng-Yi Chang, Chih-Wen Feng, Shang-Yuan Tsai
-
Publication number: 20110174774Abstract: A method of descumming a patterned photoresist is provided. First a material layer to be etched is provided. The material layer is covered by a patterned photoresist. Then a descum process is preformed to descum the edge of the patterned photoresist by nitrogen. Finally, the descummed patterned photoresist is used as a mask for etching the material layer.Type: ApplicationFiled: January 21, 2010Publication date: July 21, 2011Inventors: Ying-Chih Lin, Pei-Yu Chou, Jiunn-Hsiung Liao, Chih-Wen Feng, Feng-Yi Chang, Shang-Yuan Tsai