Patents by Inventor Shang-Yuan Yu

Shang-Yuan Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11664235
    Abstract: Among other things, one or more systems and techniques for removing a photoresist from a semiconductor wafer are provided. The photoresist is formed over the semiconductor wafer for patterning or material deposition. Once completed, the photoresist is removed in a manner that mitigates damage to the semiconductor wafer or structures formed thereon. In an embodiment, trioxygen liquid is supplied to the photoresist. The trioxygen liquid is activated using an activator, such as an ultraviolet activator or a hydrogen peroxide activator, to create activated trioxygen liquid used to remove the photoresist. In an embodiment, the activation of the trioxygen liquid results in free radicals that aid in removing the photoresist. In an embodiment, an initial photoresist strip, such as using a sulfuric acid hydrogen peroxide mixture, is performed to remove a first portion of the photoresist, and the activated trioxygen liquid is used to remove a second portion of the photoresist.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 30, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shang-Yuan Yu, Hsiao Chien-Wen, Jui-Chuan Chang, Shao-Fu Hsu, Shao-Yen Ku, Wen-Chang Tsai, Yuan-Chih Chiang
  • Patent number: 11090696
    Abstract: A method includes introducing ozone toward a photoresist layer over a substrate. The ozone is decomposed into dioxygen and first atomic oxygen. The dioxygen is decomposed into second atomic oxygen. The first atomic oxygen and the second atomic oxygen are reacted with the photoresist layer. An apparatus that performs the method is also disclosed.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan Chang, Shao-Yen Ku, Wen-Chang Tsai, Shang-Yuan Yu, Chien-Wen Hsiao, Fan-Yi Hsu
  • Publication number: 20210077958
    Abstract: Chemical liquid is injected into a tank. A concentration of a first gas dissolved in the chemical liquid is detected. Based on the detected concentration of the first gas, at least one of the first gas and a second gas is injected into the tank to sustain at least one of the concentration of the first gas and a concentration of the second gas in a range of a target value.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Yu KUO, Shang-Yun HUANG, Weibo YU, Shang-Yuan YU
  • Publication number: 20200094298
    Abstract: A method includes introducing ozone toward a photoresist layer over a substrate. The ozone is decomposed into dioxygen and first atomic oxygen. The dioxygen is decomposed into second atomic oxygen. The first atomic oxygen and the second atomic oxygen are reacted with the photoresist layer. An apparatus that performs the method is also disclosed.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 26, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan CHANG, Shao-Yen KU, Wen-Chang TSAI, Shang-Yuan YU, Chien-Wen HSIAO, Fan-Yi HSU
  • Patent number: 10510527
    Abstract: Some embodiments relate to methods and apparatus for mitigating high metal concentrations in photoresist residue and recycling sulfuric acid (H2SO4) in single wafer cleaning tools. In some embodiments, a disclosed single wafer cleaning tool has a processing chamber that houses a semiconductor substrate. A high oxidative treatment unit may apply a high oxidative chemical pre-treatment to the semiconductor substrate to remove a photoresist residue having metal impurities from the semiconductor substrate in a manner that results in a contaminant remainder. A SPM cleaning unit apply a sulfuric-peroxide mixture (SPM) cleaning solution to the semiconductor substrate to remove the contaminant remainder from the semiconductor substrate as an SPM effluent. The SPM effluent is provided to a recycling unit configured to recover sulfuric acid (H2SO4) from the SPM effluent and to provide the recovered H2SO4 to the SPM cleaning unit via a feedback conduit.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Wen Hsiao, Shao-Yen Ku, Tzu-Yang Chung, Shang-Yuan Yu, Wagner Chang
  • Patent number: 10486204
    Abstract: A semiconductor apparatus for removing a photoresist layer on a substrate includes a platform, a first ultraviolet lamp, and an ozone supplier. The platform is used to support the substrate. The first ultraviolet lamp is used to provide first ultraviolet light. The ozone supplier has at least one first nozzle for introducing ozone toward the substrate through the first ultraviolet light, such that at least a part of the ozone is decomposed by the first ultraviolet light, and at least a part of the decomposed ozone reaches the photoresist layer to react with the photoresist layer. Moreover, a method of removing a photoresist layer on a substrate is also provided.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: November 26, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jui-Chuan Chang, Shao-Yen Ku, Wen-Chang Tsai, Shang-Yuan Yu, Chien-Wen Hsiao, Fan-Yi Hsu
  • Publication number: 20180047580
    Abstract: Among other things, one or more systems and techniques for removing a photoresist from a semiconductor wafer are provided. The photoresist is formed over the semiconductor wafer for patterning or material deposition. Once completed, the photoresist is removed in a manner that mitigates damage to the semiconductor wafer or structures formed thereon. In an embodiment, trioxygen liquid is supplied to the photoresist. The trioxygen liquid is activated using an activator, such as an ultraviolet activator or a hydrogen peroxide activator, to create activated trioxygen liquid used to remove the photoresist. In an embodiment, the activation of the trioxygen liquid results in free radicals that aid in removing the photoresist. In an embodiment, an initial photoresist strip, such as using a sulfuric acid hydrogen peroxide mixture, is performed to remove a first portion of the photoresist, and the activated trioxygen liquid is used to remove a second portion of the photoresist.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Inventors: Shang-Yuan YU, Hsiao CHIEN-WEN, Jui-Chuan CHANG, Shao-Fu HSU, Shao-Yen KU, Wen-Chang TSAI, Yuan-Chih CHIANG
  • Patent number: 9805946
    Abstract: Among other things, one or more systems and techniques for removing a photoresist from a semiconductor wafer are provided. The photoresist is formed over the semiconductor wafer for patterning or material deposition. Once completed, the photoresist is removed in a manner that mitigates damage to the semiconductor wafer or structures formed thereon. In an embodiment, trioxygen liquid is supplied to the photoresist. The trioxygen liquid is activated using an activator, such as an ultraviolet activator or a hydrogen peroxide activator, to create activated trioxygen liquid used to remove the photoresist. In an embodiment, the activation of the trioxygen liquid results in free radicals that aid in removing the photoresist. In an embodiment, an initial photoresist strip, such as using a sulfuric acid hydrogen peroxide mixture, is performed to remove a first portion of the photoresist, and the activated trioxygen liquid is used to remove a second portion of the photoresist.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shang-Yuan Yu, Shao-Yen Ku, Hsiao Chien-Wen, Shao-Fu Hsu, Yuan-Chih Chiang, Wen-Chang Tsai, Jui-Chuan Chang
  • Patent number: 9781994
    Abstract: One or more techniques or systems for cleaning wafers during semiconductor fabrication or an associated brush are provided herein. In some embodiments, the brush includes a brush body and one or more inner hole supports within the brush body. For example, a first inner hole support and a second inner hole support define a first inner hole associated with a first size. For another example, a third inner hole support and a fourth inner hole support define a second inner hole associated with a second size different than the first size. In some embodiments, a cleaning solution is applied to a wafer based on a first flow rate at a first brush position and based on a second flow rate at a second brush position. In this manner, a flow field associated with wafer cleaning is provided, thus enhancing cleaning efficiency, for example.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 10, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shang-Yuan Yu, Ming-Te Chen, Chi-Fu Yu, Shao-Yen Ku, Tzu-Yang Chung, Hsiao Chien-Wen, Shan-Ching Lin
  • Patent number: 9349617
    Abstract: Embodiments that relate to mechanisms for cleaning wafers is provided. A method for wafer cleaning includes cleaning wafers by a wet-bench cleaning operation. The method also includes thereafter cleaning each of the wafers by a single-wafer cleaning operation. In addition, a cleaning apparatus for enhancing the performance of the above method is also provided.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 24, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Yuan Yu, Shao-Yen Ku, Chien-Wen Hsiao, Hong-Jie Xu, Jui-Chuan Chang, Wen-Chang Tsai
  • Publication number: 20160129484
    Abstract: A semiconductor apparatus for removing a photoresist layer on a substrate includes a platform, a first ultraviolet lamp, and an ozone supplier. The platform is used to support the substrate. The first ultraviolet lamp is used to provide first ultraviolet light. The ozone supplier has at least one first nozzle for introducing ozone toward the substrate through the first ultraviolet light, such that at least a part of the ozone is decomposed by the first ultraviolet light, and at least a part of the decomposed ozone reaches the photoresist layer to react with the photoresist layer. Moreover, a method of removing a photoresist layer on a substrate is also provided.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 12, 2016
    Inventors: Jui-Chuan CHANG, Shao-Yen KU, Wen-Chang TSAI, Shang-Yuan YU, Chien-Wen HSIAO, Fan-Yi HSU
  • Publication number: 20150144159
    Abstract: Embodiments that relate to mechanisms for cleaning wafers is provided. A method for wafer cleaning includes cleaning wafers by a wet-bench cleaning operation. The method also includes thereafter cleaning each of the wafers by a single-wafer cleaning operation. In addition, a cleaning apparatus for enhancing the performance of the above method is also provided.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shang-Yuan YU, Shao-Yen KU, Chien-Wen HSIAO, Hong-Jie XU, Jui-Chuan CHANG, Wen-Chang TSAI
  • Publication number: 20150064928
    Abstract: Among other things, one or more systems and techniques for removing a photoresist from a semiconductor wafer are provided. The photoresist is formed over the semiconductor wafer for patterning or material deposition. Once completed, the photoresist is removed in a manner that mitigates damage to the semiconductor wafer or structures formed thereon. In an embodiment, trioxygen liquid is supplied to the photoresist. The trioxygen liquid is activated using an activator, such as an ultraviolet activator or a hydrogen peroxide activator, to create activated trioxygen liquid used to remove the photoresist. In an embodiment, the activation of the trioxygen liquid results in free radicals that aid in removing the photoresist. In an embodiment, an initial photoresist strip, such as using a sulfuric acid hydrogen peroxide mixture, is performed to remove a first portion of the photoresist, and the activated trioxygen liquid is used to remove a second portion of the photoresist.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shang-Yuan Yu, Shao-Yen Ku, Hsiao Chien-Wen, Shao-Fu Hsu, Yuan-Chih Chiang, Wen-Chang Tsai, Jui-Chuan Chang
  • Publication number: 20140216500
    Abstract: Some embodiments relate to methods and apparatus for mitigating high metal concentrations in photoresist residue and recycling sulfuric acid (H2SO4) in single wafer cleaning tools. In some embodiments, a disclosed single wafer cleaning tool has a processing chamber that houses a semiconductor substrate. A high oxidative treatment unit may apply a high oxidative chemical pre-treatment to the semiconductor substrate to remove a photoresist residue having metal impurities from the semiconductor substrate in a manner that results in a contaminant remainder. A SPM cleaning unit apply a sulfuric-peroxide mixture (SPM) cleaning solution to the semiconductor substrate to remove the contaminant remainder from the semiconductor substrate as an SPM effluent. The SPM effluent is provided to a recycling unit configured to recover sulfuric acid (H2SO4) from the SPM effluent and to provide the recovered H2SO4to the SPM cleaning unit via a feedback conduit.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semicunductor Manufacturing Co., Ltd.
    Inventors: Chien-Wen Hsiao, Shao-Yen Ku, Tzu-Yang Chung, Shang-Yuan Yu, Wagner Chang
  • Publication number: 20140158155
    Abstract: One or more techniques or systems for cleaning wafers during semiconductor fabrication or an associated brush are provided herein. In some embodiments, the brush includes a brush body and one or more inner hole supports within the brush body. For example, a first inner hole support and a second inner hole support define a first inner hole associated with a first size. For another example, a third inner hole support and a fourth inner hole support define a second inner hole associated with a second size different than the first size. In some embodiments, a cleaning solution is applied to a wafer based on a first flow rate at a first brush position and based on a second flow rate at a second brush position. In this manner, a flow field associated with wafer cleaning is provided, thus enhancing cleaning efficiency, for example.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shang-Yuan Yu, Ming-Te Chen, Chi-Fu Yu, Shao-Yen Ku, Tzu-Yang Chung, Hsiao Chien-Wen, Shan-Ching Lin