Patents by Inventor SHANGHAI HUA HONG NEC ELECTRONICS CO.

SHANGHAI HUA HONG NEC ELECTRONICS CO. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130299896
    Abstract: A superjunction device in which corner portions of each annular-shaped second trench are composed of a plurality of alternately arranged first sides and second sides. The first sides are parallel to a plurality of parallel arranged first trenches in a current-flowing area, while the second sides are perpendicular to the first sides and the first trenches. Such design ensures that Miller indices of sidewalls and bottom face of any portion of each second trench belong to the same family of crystal planes. Moreover, with this design, the corner portions of the second trenches can be filled with a silicon epitaxial material at the same rate with the rest portions thereof, which ensures for the second trenches to be uniformly and completely filled without any defects in the corner portions and hence improve the performance of the superjunction device.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 14, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
  • Publication number: 20130196491
    Abstract: A method of preventing dopant from diffusing into atmosphere in a BiCMOS process is disclosed. The BiCMOS process includes the steps of: depositing a first silicon oxide layer and a silicon nitride layer over surface of a silicon substrate; etching the silicon substrate to form a plurality of shallow trenches therein; depositing a second silicon oxide layer over surface of the silicon substrate and forming silicon oxide sidewalls over inner side faces of each of the plurality of shallow trenches; forming a heavily doped pseudo buried layer under a bottom of one of the plurality of shallow trenches by implanting a dopant with a high concentration; performing an annealing process to promote diffusion of the dopant contained in the pseudo buried layer, wherein the method includes growing, by thermal oxidation, a silicon oxide layer over a bottom of each of the plurality of shallow trenches during the annealing process.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130175581
    Abstract: A zener diode in a SiGe BiCMOS process is disclosed. An N-type region of the zener diode is formed in an active region and surrounded by an N-deep well. A pseudo buried layer is formed under each of the shallow trench field oxide regions on a corresponding side of the active region, and the N-type region is connected to the pseudo buried layers via the N-deep well. The N-type region has its electrode picked up by deep hole contacts. A P-type region of the zener diode is formed of a P-type ion implanted region in the active region. The P-type region is situated above and in contact with the N-type region, and has a doping concentration greater than that of the N-type region. The P-type region has its electrode picked up by metal contact. A method of fabricating zener diode in a SiGe BiCMOS process is also disclosed.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong NEC Electronics Co., Ltd.
  • Publication number: 20130149836
    Abstract: A method of double-sided patterning including positioning a first silicon wafer with its back side facing upwards and forming one or more deep trenches serving as alignment marks on the back side of the first silicon wafer; performing alignment with respect to the alignment marks and forming a back-side pattern on the first silicon wafer; depositing a polishing stop layer on the back side of the first silicon wafer; flipping over the first silicon wafer and bonding its back side with the front side of a second silicon wafer; polishing the front side of the first silicon wafer to expose the alignment marks from the front side; performing alignment with respect to the alignment marks and forming a front-side pattern on the first silicon wafer; removing the second silicon wafer and the polishing stop layer to obtain a double-sided patterned structure on the first silicon wafer.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 13, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130140604
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, including: a substrate; two field oxide regions formed in the substrate; two pseudo buried layers, each being formed under a corresponding one of the field oxide regions; a collector region formed between the field oxide regions, the collector region laterally extending under a corresponding one of the field oxide regions and each side of the collector region being connected with a corresponding one of the pseudo buried layers; a matching layer formed under both the pseudo buried layers and the collector region; and two deep hole electrodes, each being formed in a corresponding one of the field oxide regions, the deep hole electrodes being connected to the corresponding ones of the pseudo buried layers for picking up the collector region. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 20, 2012
    Publication date: June 6, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong NEC Electronics Co., Ltd.
  • Publication number: 20130130504
    Abstract: A method of manufacturing non-photosensitive polyimide passivation layer is disclosed. The method includes: spin-coating a non-photosensitive polyimide layer over a wafer and baking it; depositing a silicon dioxide thin film thereon; spin-coating a photoresist layer over the silicon dioxide thin film and baking it; exposing and developing the photoresist layer to form a photoresist pattern; etching the silicon dioxide thin film by using the photoresist pattern as a mask; removing the patterned photoresist layer; dry etching the non-photosensitive polyimide layer by using the patterned silicon dioxide thin film as a mask; removing the patterned silicon dioxide thin film; and curing to form a imidized polyimide passivation layer. The method addresses issues of the traditional non-photosensitive polyimide process, including aluminum corrosion by developer, tapered profile of non-photosensitive polyimide layer and generation of photoresist residues.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong NEC Electronics Co., Ltd.
  • Publication number: 20130130486
    Abstract: A method of forming silicide layers is disclosed, the method including: providing a silicon substrate which includes at least one first region and at least one second region; depositing a dielectric layer over the silicon substrate; forming at least one opening having a great width/depth ratio in the dielectric layer above the at least one first region, and forming at least one opening having a small width/depth ratio in the dielectric layer above the at least one second region; depositing a metal and performing a high-temperature annealing to form a thick silicide layer in each of the at least one opening above each of the at least one first region and to form a thin silicide layer in each of the at least one opening above each of the at least one second region; removing the remaining metal not formed into the silicide layers.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 23, 2013
    Applicant: Shanghai Hua Hong Nec Electronics Co., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., LTD.
  • Publication number: 20130126945
    Abstract: An ultra high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, in which, a collector region is formed between two isolation structures; a pseudo buried layer is formed under each isolation structure and each side of the collector region is connected with a corresponding pseudo buried layer; a SiGe field plate is formed on each of the isolation structures; each pseudo buried layer is picked up by a first contact hole electrode and each SiGe field plate is picked up by a second contact hole electrode; and each first contact hole electrode is connected to its adjacent second contact hole electrode and the two contact hole electrodes jointly serve as an emitter. A manufacturing method of the ultra high voltage SiGe HBT is also disclosed.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 23, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130113104
    Abstract: A structure for picking up a buried layer is disclosed. The buried layer is formed in a substrate and has an epitaxial layer formed thereon. One or more isolation regions are formed in the epitaxial layer. The structure for picking up the buried layer includes a contact-hole electrode formed in each of the isolation regions. A bottom of the contact-hole electrode is in contact with the buried layer. As the structure of the present invention is formed in the isolation region without occupying any portion of the active region, its size is much smaller than that of a sinker region of the prior art. Therefore, device area is tremendously reduced. Moreover, as the contact-hole electrode picks up the buried layer by a metal contact, the series resistance of the device can be greatly reduced. A method of forming the above structure is also disclosed.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130113022
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, which includes: two isolation structures each being formed in a trench; a set of three or more pseudo buried layers formed under each trench with every adjacent two pseudo buried layers of the set being vertically contacted with each other; and a collector region. In this design, the lowermost pseudo buried layers of the two sets are laterally in contact with each other, and the collector region is surrounded by the two isolation structures and the two sets of pseudo buried layers. As the breakdown voltage of a SiGe HBT according to the present invention is determined by the distance between an uppermost pseudo buried layer and the edge of an active region, SiGe HBTs having different breakdown voltages can be achieved. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: SHANGHAI HUA HONG NEC ELECTRONICS CO.
  • Publication number: 20130113021
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) having a deep pseudo buried layer is disclosed. The SiGe HBT includes isolation structures formed in trenches, first pseudo buried layers and second pseudo buried layers, and a collector region. The first pseudo buried layers are formed under the respective trenches and the second pseudo buried layers are formed under the first pseudo buried layers, with each first pseudo buried layer vertically contacting with a second pseudo buried layer. The second pseudo buried layers are laterally connected to each other, and the collector region is surrounded by the trenches, the first pseudo buried layers and the second pseudo buried layers. The cross section of each of the trenches has a regular trapezoidal shape, namely, each trench's width of its top is smaller than that of its bottom. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 9, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd.
  • Publication number: 20130099351
    Abstract: A bipolar transistor is disclosed, which includes a collector region, a base region, an emitter region and field plates. Each field plate is present in a structure of a flat sidewall covering one side face of the active region so that it also covers the collector region from one side. The field plate has its surface parallel to the side face of the active region and is isolated from the side face of the active region by a pad oxide layer. The field plate has its top lower than the surface of the active region. The bipolar transistor is capable of improving the breakdown voltage of the device without increasing the collector resistance or deteriorating the frequency characteristic. A method of manufacturing bipolar transistor is also disclosed.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 25, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD
    Inventor: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD
  • Publication number: 20130099288
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, in which a shallow trench is formed of a first shallow trench and a second shallow trench vertically joined together in the active region, the second shallow trench being located directly under the first shallow trench and having a width less than that of the first shallow trench; a pseudo buried layer is formed surrounding the bottom and side walls of the second shallow trench and is in contact with the collector region to serve as a connection layer of a collector; a deep hole contact is formed in the shallow trench and is in contact with the pseudo buried layer to pick up the collector. A SiGe HBT manufacturing method is also disclosed. The present invention is capable of improving the cut-off frequency of a SiGe HBT.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 25, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD
    Inventor: Shanghai Hua Hong Nec Electronics Co.,Ltd.
  • Publication number: 20130097570
    Abstract: A method of inserting dummy patterns is provided. The method includes: determining an applicable area in which dummy patterns shall be inserted and an inapplicable area in which dummy patterns shall not be inserted on a chip; and inserting dummy patterns starting from one side of the inapplicable area and arranging the inserted dummy patterns into circles. The method of the present invention ensures that dummy patters are preferentially inserted around the device that requires protection by dummy patterns, so that good uniformity of chip pattern densities is guaranteed and within-wafer uniformity is improved, thus improving the yield and performance of semiconductor devices.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 18, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD
    Inventor: Shanghai Hua Hong Nec Electronics Co., Ltd