Patents by Inventor Shanglei JIANG

Shanglei JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11426833
    Abstract: The present invention provides a cross-axis and cross-point modal testing and parameter identification method for predicting the cutting stability, which is used to improve the accuracy of existing prediction methods of cutting stability. The method firstly installs a miniature tri-axial acceleration sensor at the tool tip, and conducts the cross-axis and cross-point experimental modal tests respectively. The measured transfer functions are grouped according to different measuring axes, and the dynamic parameters are separately identified from each group of transfer functions. Then, the contact region between the cutter and workpiece is divided into several cutting layer differentiators. After that, together with other dynamic parameters, all the parameters are assembled into system dynamic parameter matrices matching with the dynamic model. Finally, dynamic parameter matrices including the effects of cross-axis and cross-point model couplings are obtained.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 30, 2022
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Yuwen Sun, Shanglei Jiang
  • Publication number: 20200230769
    Abstract: The present invention provides a cross-axis and cross-point modal testing and parameter identification method for predicting the cutting stability, which is used to improve the accuracy of existing prediction methods of cutting stability. The method firstly installs a miniature tri-axial acceleration sensor at the tool tip, and conducts the cross-axis and cross-point experimental modal tests respectively. The measured transfer functions are grouped according to different measuring axes, and the dynamic parameters are separately identified from each group of transfer functions. Then, the contact region between the cutter and workpiece is divided into several cutting layer differentiators. After that, together with other dynamic parameters, all the parameters are assembled into system dynamic parameter matrices matching with the dynamic model. Finally, dynamic parameter matrices including the effects of cross-axis and cross-point model couplings are obtained.
    Type: Application
    Filed: September 13, 2018
    Publication date: July 23, 2020
    Inventors: Yuwen SUN, Shanglei JIANG