Patents by Inventor Shanjen Pan

Shanjen Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10917052
    Abstract: Transistors may be manufactured with a shared drain to reduce die area consumed by circuitry. In one example, two transistors can be manufactured that include two body regions that abut a shared drain region. The two transistors can be independently operated by coupling terminals to a source and a gate for each transistor and the shared drain. Characteristics of the two transistors can be controlled by adjusting feature sizes, such as overlap between the gate and the shared drain for a transistor. In particular, two transistors with different voltage requirements can be manufactured using a shared drain structure, which can be useful in amplifier circuitry and in particular Class-D amplifiers.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 9, 2021
    Assignee: Cirrus Logic, Inc.
    Inventors: Shanjen Pan, Marc L. Tarabbia, Christian Larsen
  • Publication number: 20190238104
    Abstract: Transistors may be manufactured with a shared drain to reduce die area consumed by circuitry. In one example, two transistors can be manufactured that include two body regions that abut a shared drain region. The two transistors can be independently operated by coupling terminals to a source and a gate for each transistor and the shared drain. Characteristics of the two transistors can be controlled by adjusting feature sizes, such as overlap between the gate and the shared drain for a transistor. In particular, two transistors with different voltage requirements can be manufactured using a shared drain structure, which can be useful in amplifier circuitry and in particular Class-D amplifiers.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Shanjen Pan, Marc L. Tarabbia, Christian Larsen
  • Patent number: 10298184
    Abstract: Transistors may be manufactured with a shared drain to reduce die area consumed by circuitry. In one example, two transistors can be manufactured that include two body regions that abut a shared drain region. The two transistors can be independently operated by coupling terminals to a source and a gate for each transistor and the shared drain. Characteristics of the two transistors can be controlled by adjusting feature sizes, such as overlap between the gate and the shared drain for a transistor. In particular, two transistors with different voltage requirements can be manufactured using a shared drain structure, which can be useful in amplifier circuitry and in particular Class-D amplifiers.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 21, 2019
    Assignee: Cirrus Logic, Inc.
    Inventors: Shanjen Pan, Marc L. Tarabbia, Christian Larsen
  • Patent number: 9919913
    Abstract: A fully depleted region may be used to reduce poly-to-substrate parasitic capacitance in an electronic device with poly-silicon layer. When the fully depleted region is located at least partially beneath the electronic device, an additional parasitic capacitance is formed between the fully depleted region and the substrate region. This additional parasitic capacitance is coupled in series with a first parasitic capacitance between a poly-silicon layer of the electronic device and the doped region. The series combination of the first parasitic capacitance and the additional parasitic capacitance results in an overall reduction of parasitic capacitance experience by an electronic device. The structure may include two doped regions on sides of the electronic device to form a fully depleted region based on lateral interaction of dopant in the doped regions and the substrate region.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: March 20, 2018
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Shanjen Pan, Marc L. Tarabbia
  • Patent number: 9853103
    Abstract: A JFET structure may be formed such that the channel region is isolated from the substrate to reduce parasitic capacitance. For example, instead of using a deep well as part of a gate structure for the JFET, the deep well may be used as an isolation region from the surrounding substrate. As a result, the channel in the JFET may be pinched laterally between doped regions located between the source and the drain of the JFET. In other example embodiments, the channel may be pinched vertically and the isolation between the JFET structure and the substrate is maintained. A JFET structure with improved isolation from the substrate may be employed in some embodiments as a low-noise amplifier. In particular, the low-noise amplifier may be coupled to small signal devices, such as microelectromechanical systems (MEMS)-based microphones.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: December 26, 2017
    Assignee: Cirrus Logic, Inc.
    Inventors: Shanjen Pan, Marc L. Tarabbia, John L. Melanson
  • Publication number: 20170294512
    Abstract: A JFET structure may be formed such that the channel region is isolated from the substrate to reduce parasitic capacitance. For example, instead of using a deep well as part of a gate structure for the JFET, the deep well may be used as an isolation region from the surrounding substrate. As a result, the channel in the JFET may be pinched laterally between doped regions located between the source and the drain of the JFET. In other example embodiments, the channel may be pinched vertically and the isolation between the JFET structure and the substrate is maintained. A JFET structure with improved isolation from the substrate may be employed in some embodiments as a low-noise amplifier. In particular, the low-noise amplifier may be coupled to small signal devices, such as microelectromechanical systems (MEMS)-based microphones.
    Type: Application
    Filed: April 7, 2016
    Publication date: October 12, 2017
    Inventors: Shanjen Pan, Marc L. Tarabbia, John L. Melanson
  • Publication number: 20170272042
    Abstract: Transistors may be manufactured with a shared drain to reduce die area consumed by circuitry. In one example, two transistors can be manufactured that include two body regions that abut a shared drain region. The two transistors can be independently operated by coupling terminals to a source and a gate for each transistor and the shared drain. Characteristics of the two transistors can be controlled by adjusting feature sizes, such as overlap between the gate and the shared drain for a transistor. In particular, two transistors with different voltage requirements can be manufactured using a shared drain structure, which can be useful in amplifier circuitry and in particular Class-D amplifiers.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 21, 2017
    Inventors: Shanjen Pan, Marc L. Tarabbia, Christian Larsen
  • Publication number: 20160145093
    Abstract: A fully depleted region may be used to reduce poly-to-substrate parasitic capacitance in an electronic device with poly-silicon layer. When the fully depleted region is located at least partially beneath the electronic device, an additional parasitic capacitance is formed between the fully depleted region and the substrate region. This additional parasitic capacitance is coupled in series with a first parasitic capacitance between a poly-silicon layer of the electronic device and the doped region. The series combination of the first parasitic capacitance and the additional parasitic capacitance results in an overall reduction of parasitic capacitance experience by an electronic device. The structure may include two doped regions on sides of the electronic device to form a fully depleted region based on lateral interaction of dopant in the doped regions and the substrate region.
    Type: Application
    Filed: November 16, 2015
    Publication date: May 26, 2016
    Inventors: Shanjen Pan, Marc L. Tarabbia
  • Patent number: 9275992
    Abstract: Trenches may be formed in layers on a semiconductor substrate for defining electrical components for an electronic device, such as an amplifier. A polishing step may be performed after formation of the trenches and deposition of other layer(s) to define regions for resistors, capacitors, or other elements in a metal layer on a semiconductor substrate. The polishing step may create discontinuities in metal layers on the semiconductor substrate that define electrically isolated regions corresponding to the resistors, capacitor, and other components of the electronic device.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: March 1, 2016
    Assignee: CIRRUS LOGIC, INC.
    Inventors: Marc L. Tarabbia, Shanjen Pan
  • Patent number: 8765550
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate NMOSFET (n-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves as the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Alan T. Mitchell, Jack G. Qian
  • Publication number: 20130256773
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 3, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
  • Patent number: 8546222
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: October 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
  • Publication number: 20130016570
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate NMOSFET (n-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves as the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Application
    Filed: February 6, 2012
    Publication date: January 17, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shanjen Pan, Allan T. Mitchell, Jack G. Qian
  • Publication number: 20120292682
    Abstract: In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shanjen Pan, Allan T. Mitchell, Weidong Tian
  • Publication number: 20100035421
    Abstract: A method for forming a partially blocking layer for an ion implantation process, which may be varied across the IC to form regions with different dopant concentrations, and regions with varying dopant concentrations in each contiguously implanted region, is disclosed. One or more temporary and/or permanent layers may form the partially blocking layer, including a combination of different materials such as polysilicon, silicon dioxide, silicon nitride, and photoresist. The partially blocking layer may be a uniform continuous sheet which transmits a uniform fraction of dopants, or a reticulated screen which transmits dopants through multiple open areas. Several partially blocking layers, each absorbing a different fraction of implanted dopants, may be formed on an IC to produce instances of a component with different performance parameters such as operation voltage, sheet resistance or gain.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Shanjen Pan
  • Patent number: 7618870
    Abstract: The present invention provides, in one embodiment, a transistor (100). The transistor (100) comprises a doped semiconductor substrate (105) and a gate structure (110) over the semiconductor substrate (105), the gate structure (110) having a gate corner (125). The transistor (100) also includes a drain-extended well (115) surrounded by the doped semiconductor substrate (105). The drain-extended well (115) has an opposite dopant type as the doped semiconductor substrate (105). The drain-extended well (115) also has a low-doped region (145) between high-doped regions (150), wherein an edge of the low-doped region (155) is substantially coincident with a perimeter (140) defined by the gate corner (125). Other embodiments of the present invention include a method of manufacturing a transistor (200) and an integrated circuit (300).
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 17, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Publication number: 20090124068
    Abstract: The present invention provides, in one embodiment, a transistor (100). The transistor (100) comprises a doped semiconductor substrate (105) and a gate structure (110) over the semiconductor substrate (105), the gate structure (110) having a gate corner (125). The transistor (100) also includes a drain-extended well (115) surrounded by the doped semiconductor substrate (105). The drain-extended well (115) has an opposite dopant type as the doped semiconductor substrate (105). The drain-extended well (115) also has a low-doped region (145) between high-doped regions (150), wherein an edge of the low-doped region (155) is substantially coincident with a perimeter (140) defined by the gate corner (125). Other embodiments of the present invention include a method of manufacturing a transistor (200) and an integrated circuit (300).
    Type: Application
    Filed: January 22, 2009
    Publication date: May 14, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Patent number: 7498652
    Abstract: The present invention provides, in one embodiment, a transistor (100). The transistor (100) comprises a doped semiconductor substrate (105) and a gate structure (110) over the semiconductor substrate (105), the gate structure (110) having a gate corner (125). The transistor (100) also includes a drain-extended well (115) surrounded by the doped semiconductor substrate (105). The drain-extended well (115) has an opposite dopant type as the doped semiconductor substrate (105). The drain-extended well (115) also has a low-doped region (145) between high-doped regions (150), wherein an edge of the low-doped region (155) is substantially coincident with a perimeter (140) defined by the gate corner (125). Other embodiments of the present invention include a method of manufacturing a transistor (200) and an integrated circuit (300).
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: March 3, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Publication number: 20080283966
    Abstract: Capacitor area is increased in the vertical direction by forming capacitors on topographic features on the chip. The features are formed during existing process steps. Adding vertical topography increases capacitance per unit area, reducing die size at no added development cost or mask steps.
    Type: Application
    Filed: August 1, 2008
    Publication date: November 20, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Xiaoju Wu, Peter Ying
  • Patent number: 7262471
    Abstract: A semiconductor device (102) that includes a drain extended PMOS transistor (CT1a) is provided, as well as fabrication methods (202) therefore. In forming the PMOS transistor, a drain (124) of the transistor is formed over a region (125) of a p-type upper epitaxial layer (106), where the region (125) of the p-type upper epitaxial layer (106) is sandwiched between a left P-WELL region (130a) and a right P-WELL region (130b) formed within the p-type upper epitaxial layer (106). The p-type upper epitaxial layer (106) is formed over a semiconductor body (104) that has an n-buried layer (108) formed therein. This arrangement serves to increase the breakdown voltage (BVdss) of the drain extended PMOS transistor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 28, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd