Patents by Inventor Shankar B. Baliga

Shankar B. Baliga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10054488
    Abstract: An improved system for evaluating one or more components of a vehicle is provided. The system includes a set of imaging devices configured to acquire image data based on infrared emissions of at least one vehicle component of the vehicle as it moves through a field of view of at least one of the set of imaging devices. An imaging device in the set of imaging devices can include a linear array of photoconductor infrared detectors and a thermoelectric cooler for maintaining an operating temperature of the linear array of detectors at a target operating temperature. The infrared emissions can be within at least one of: the mid-wavelength infrared (MWIR) radiation spectrum or the long wavelength infrared (LWIR) radiation spectrum.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 21, 2018
    Assignee: International Electronic Machines Corp.
    Inventors: Zahid F. Mian, Ronald W. Gamache, Shankar B. Baliga
  • Patent number: 9995647
    Abstract: An ultrasonic gas leak detector system for locating a source of ultrasonic airborne energy is described. An exemplary embodiment includes a plurality of spatially separated ultrasonic gas leak detectors, each configured to generate signals indicative of detected angles of arrival of received ultrasonic energy at the respective detectors. A locator processor receives the signals generated by the detectors, and is configured to process the signals to determine a location in three dimensions of the source of the ultrasonic energy received at the detectors and provide locator processor output signals indicative of the location.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 12, 2018
    Assignee: General Monitors, Inc.
    Inventors: Javid J. Huseynov, Shankar B. Baliga
  • Publication number: 20170363475
    Abstract: A flame detector configured for radiant energy monitoring, quantification, and information transmission. The system has at least one optical sensor channel, each including an optical sensor configured to receive optical energy from a surveilled scene within a field of view, the channel producing a signal providing a quantitative indication of the optical radiation energy received by the optical sensor within a sensor spectral bandwidth. A processor is responsive to the signal from the at least one optical sensor channel to provide a flame present indication of the presence of a flame, and a quantitative indication representing a magnitude of the optical radiation energy from the surveilled scene. An Artificial Neural Network may be used to provide an output corresponding to a flame condition.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Shankar B. Baliga, Javid Huseynov, John G. Romero, Cristian Filimon
  • Publication number: 20170089800
    Abstract: An ultrasonic gas leak detector system for locating a source of ultrasonic airborne energy is described. An exemplary embodiment includes a plurality of spatially separated ultrasonic gas leak detectors, each configured to generate signals indicative of detected angles of arrival of received ultrasonic energy at the respective detectors.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Javid J. Huseynov, Shankar B. Baliga
  • Patent number: 9506833
    Abstract: An ultrasonic gas leak detector and test method, configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from ultrasound generated by man-made ultrasonic sources. In an exemplary embodiment an ultrasonic gas leak detector is able to identify a remote ultrasonic test source as a known test source and to initiate a test sequence instead of alarm. An output function generates detector outputs in dependence on the test mode initiation. The ultrasonic gas leak detector may also identify various other man-made ultrasonic sources as being neither gas leaks nor remote test sources but as nuisance or hostile sources to be identified as such. The test method utilizes a narrowband test source at a known ultrasonic frequency to ensonify the detector.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: November 29, 2016
    Assignee: General Monitors, Inc.
    Inventors: Javid Huseynov, Shankar B. Baliga
  • Patent number: 9482592
    Abstract: An embodiment of a directional ultrasonic gas leak detector includes an array of spaced MEMS microphones, each responsive to incident airborne ultrasonic energy from gas leak sources to generate a microphone signal. A beamforming processor is responsive to the microphone signals from the array to generate processor output signals indicative of estimated angles of arrival of ultrasonic energy incident on the array. The array may be disposed in an explosion proof housing structure for operation in hazardous location, or implemented as an intrinsically safe device. In another embodiment, a display is responsive to the processor output signals to generate an image representative of a surveilled scene with the estimated magnitudes of incident energy at beam directions overlaid onto the image.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: November 1, 2016
    Assignee: General Monitors, Inc.
    Inventors: Javid J. Huseynov, Shankar B. Baliga, John G. Romero
  • Patent number: 9459142
    Abstract: Exemplary embodiments of a flame detector and operating method. Optical energy is received at one or more optical sensors, and the detector processes the energy to determine whether the received energy is from a known remote test source. If so, the flame detector is operated in a test mode. If the processing indicates that the received optical energy is not a test signal, the flame detector is operated in a flame detection operating mode. The detector processing uses an artificial neural network in an exemplary embodiment in the flame detection operation mode.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: October 4, 2016
    Assignee: General Monitors, Inc.
    Inventors: Javid J. Huseynov, Shankar B. Baliga
  • Publication number: 20160084729
    Abstract: An embodiment of a directional ultrasonic gas leak detector includes an array of spaced MEMS microphones, each responsive to incident airborne ultrasonic energy from gas leak sources to generate a microphone signal. A beamforming processor is responsive to the microphone signals from the array to generate processor output signals indicative of estimated angles of arrival of ultrasonic energy incident on the array. The array may be disposed in an explosion proof housing structure for operation in hazardous location, or implemented as an intrinsically safe device. In another embodiment, a display is responsive to the processor output signals to generate an image representative of a surveilled scene with the estimated magnitudes of incident energy at beam directions overlaid onto the image.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Javid J. Huseynov, Shankar B. Baliga, John G. Romero
  • Publication number: 20160003678
    Abstract: An improved system for evaluating one or more components of a vehicle is provided. The system includes a set of imaging devices configured to acquire image data based on infrared emissions of at least one vehicle component of the vehicle as it moves through a field of view of at least one of the set of imaging devices. An imaging device in the set of imaging devices can include a linear array of photoconductor infrared detectors and a thermoelectric cooler for maintaining an operating temperature of the linear array of detectors at a target operating temperature. The infrared emissions can be within at least one of: the mid-wavelength infrared (MWIR) radiation spectrum or the long wavelength infrared (LWIR) radiation spectrum.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Applicant: International Electronic Machines Corporation
    Inventors: Zahid F. Mian, Ronald W. Gamache, Shankar B. Baliga
  • Publication number: 20150276540
    Abstract: An ultrasonic gas leak detector and test method, configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from ultrasound generated by man-made ultrasonic sources. In an exemplary embodiment an ultrasonic gas leak detector is able to identify a remote ultrasonic test source as a known test source and to initiate a test sequence instead of alarm. An output function generates detector outputs in dependence on the test mode initiation. The ultrasonic gas leak detector may also identify various other man-made ultrasonic sources as being neither gas leaks nor remote test sources but as nuisance or hostile sources to be identified as such. The test method utilizes a narrowband test source at a known ultrasonic frequency to ensonify the detector.
    Type: Application
    Filed: July 21, 2014
    Publication date: October 1, 2015
    Inventors: Javid Huseynov, Shankar B. Baliga
  • Patent number: 9134185
    Abstract: An improved system for evaluating one or more components of a vehicle is provided. The system includes a set of imaging devices configured to acquire image data based on infrared emissions of at least one vehicle component of the vehicle as it moves through a field of view of at least one of the set of imaging devices. An imaging device in the set of imaging devices can include a linear array of photoconductor infrared detectors and a thermoelectric cooler for maintaining an operating temperature of the linear array of detectors at a target operating temperature. The infrared emissions can be within at least one of: the mid-wavelength infrared (MWIR) radiation spectrum or the long wavelength infrared (LWIR) radiation spectrum.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: September 15, 2015
    Assignee: International Electronic Machines Corp.
    Inventors: Zahid F. Mian, Ronald W. Gamache, Shankar B. Baliga
  • Patent number: 9091613
    Abstract: An ultrasonic gas leak detector is configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from false alarm ultrasound. An exemplary embodiment includes multiple acoustic sensors for detecting acoustic energy and providing sensor signals, including a broadband sensor and at least one narrowband sensor, and an electronic controller responsive to the sensor signals. In one exemplary embodiment, the electronic controller is configured to provide a threshold comparator function to compare a sensor signal value representative of sensed ultrasonic energy to a gas detection threshold value, and an Artificial Neural Network (ANN) function for processing signals derived from the multitude of sensor signals and applying ANN coefficients configured to discriminate false alarm sources from gas leaks. An output function generates detector outputs in dependence on the threshold comparator output and the ANN output.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 28, 2015
    Assignee: General Monitors, Inc.
    Inventor: Shankar B. Baliga
  • Publication number: 20150204725
    Abstract: A flame detector for industrial safety applications in hazardous locations, configured for radiant energy monitoring, quantification, and information transmission. The system has at least one optical sensor channel, each including an optical sensor configured to receive optical energy from a surveilled scene within a field of view at a hazardous location, the channel producing a signal providing a quantitative indication of the optical radiation energy received by the optical sensor within a sensor spectral bandwidth. A processor is responsive to the signal from the at least one optical sensor channel to provide a flame present indication of the presence of a flame, and a quantitative indication representing a magnitude of the optical radiation energy from the surveilled scene. An Artificial Neural Network may optionally be used to provide an output corresponding to a flame condition.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Inventors: Javid Huseynov, Shankar B. Baliga, John G. Romero, Cristian Filimon
  • Patent number: 8955383
    Abstract: An ultrasonic gas leak detector is configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from false alarm ultrasound. An exemplary embodiment includes a sensor for detecting ultrasonic energy and providing sensor signals, and an electronic controller responsive to the sensor signals. In one exemplary embodiment, the electronic controller is configured to provide a threshold comparator function to compare a sensor signal value representative of sensed ultrasonic energy to a gas detection threshold value, and an Artificial Neural Network (ANN) function for processing signals derived from the digital sensor signals and applying ANN coefficients configured to discriminate false alarm sources from gas leaks. An output function generates detector outputs in dependence on the threshold comparator output and the ANN output.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: February 17, 2015
    Assignee: General Monitors, Inc.
    Inventors: Javid J. Huseynov, John G. Romero, Shankar B. Baliga
  • Patent number: 8797830
    Abstract: An explosion-proof system for generating acoustic energy. An exemplary embodiment of the system includes a main housing defining an open housing space and an opening. A cover structure is configured for removable attachment to the main housing structure to cover the opening and provide an explosion-proof housing structure. The cover structure includes an integral head mass. An acoustic energy emitting assembly includes the head mass, and an excitation assembly disposed within the explosion-proof housing structure. An electronic circuit is disposed within the explosion-proof housing structure to generate a drive signal for driving the excitation assembly to cause the acoustic energy emitting assembly to resonate and generate acoustic energy. In one embodiment the acoustic energy is a beam of ultrasonic energy useful for testing ultrasonic gas detectors. A method is also described for testing ultrasonic gas leak detectors using an ultrasonic source.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 5, 2014
    Assignee: General Monitors, Inc.
    Inventors: Shankar B. Baliga, John G. Romero, Scott W. Reed, Cristian S. Filimon
  • Patent number: 8792658
    Abstract: An exemplary embodiment of an acoustic sensor system includes a housing structure, and a miniaturized acoustic transducer mounted in the housing structure. A flame arrestor structure is mounted on or within the housing structure between the acoustic transducer and the external environment, so that ambient acoustic energy passes through the flame arrestor structure before reaching the acoustic transducer.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: July 29, 2014
    Assignee: General Monitors, Inc.
    Inventors: Shankar B. Baliga, Scott W. Reed, John G Romero
  • Publication number: 20140000347
    Abstract: An ultrasonic gas leak detector is configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from false alarm ultrasound. An exemplary embodiment includes a sensor for detecting ultrasonic energy and providing sensor signals, and an electronic controller responsive to the sensor signals. In one exemplary embodiment, the electronic controller is configured to provide a threshold comparator function to compare a sensor signal value representative of sensed ultrasonic energy to a gas detection threshold value, and an Artificial Neural Network (ANN) function for processing signals derived from the digital sensor signals and applying ANN coefficients configured to discriminate false alarm sources from gas leaks. An output function generates detector outputs in dependence on the threshold comparator output and the ANN output.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Inventors: Javid J. Huseynov, John G. Romero, Shankar B. Baliga
  • Publication number: 20140005958
    Abstract: An ultrasonic gas leak detector is configured to discriminate the ultrasound generated by a pressurized gas leak into the atmosphere from false alarm ultrasound. An exemplary embodiment includes multiple acoustic sensors for detecting acoustic energy and providing sensor signals, including a broadband sensor and at least one narrowband sensor, and an electronic controller responsive to the sensor signals. In one exemplary embodiment, the electronic controller is configured to provide a threshold comparator function to compare a sensor signal value representative of sensed ultrasonic energy to a gas detection threshold value, and an Artificial Neural Network (ANN) function for processing signals derived from the multitude of sensor signals and applying ANN coefficients configured to discriminate false alarm sources from gas leaks. An output function generates detector outputs in dependence on the threshold comparator output and the ANN output.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 2, 2014
    Applicant: General Monitors, Inc.
    Inventor: Shankar B. Baliga
  • Publication number: 20130313433
    Abstract: An improved system for evaluating one or more components of a vehicle is provided. The system includes a set of imaging devices configured to acquire image data based on infrared emissions of at least one vehicle component of the vehicle as it moves through a field of view of at least one of the set of imaging devices. An imaging device in the set of imaging devices can include a linear array of photoconductor infrared detectors and a thermoelectric cooler for maintaining an operating temperature of the linear array of detectors at a target operating temperature. The infrared emissions can be within at least one of: the mid-wavelength infrared (MWIR) radiation spectrum or the long wavelength infrared (LWIR) radiation spectrum.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 28, 2013
    Applicant: International Electronic Machines Corporation
    Inventors: Zahid F. Mian, Ronald W. Gamache, Shankar B. Baliga
  • Publication number: 20120194973
    Abstract: An explosion-proof system for generating acoustic energy. An exemplary embodiment of the system includes a main housing defining an open housing space and an opening. A cover structure is configured for removable attachment to the main housing structure to cover the opening and provide an explosion-proof housing structure. The cover structure includes an integral head mass. An acoustic energy emitting assembly includes the head mass, and an excitation assembly disposed within the explosion-proof housing structure. An electronic circuit is disposed within the explosion-proof housing structure to generate a drive signal for driving the excitation assembly to cause the acoustic energy emitting assembly to resonate and generate acoustic energy. In one embodiment the acoustic energy is a beam of ultrasonic energy useful for testing ultrasonic gas detectors. A method is also described for testing ultrasonic gas leak detectors using an ultrasonic source.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 2, 2012
    Inventors: Shankar B. Baliga, John G. Romero, Scott W. Reed, Cristian S. Filimon