Patents by Inventor Shankar Nataraj

Shankar Nataraj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7449167
    Abstract: A process for adiabatically prereforming a feedstock, includes: providing an adiabatic reactor; providing a catalyst containing 1-20 wt. % nickel and 0.4-5 wt. % potassium, wherein the catalyst has an overall catalyst porosity of 25-50% with 20-80% of the overall catalyst porosity contributed by pores having pore diameters of at least 500 ?; providing the feedstock containing natural gas and steam, wherein the natural gas contains an initial concentration of higher hydrocarbons, and a ratio of steam to natural gas in the feedstock is from 1.5:1 to 5:1; preheating the feedstock to a temperature of 300-700° C. to provide a heated feedstock; providing the heated feedstock to the reactor; and producing a product containing hydrogen, carbon monoxide, carbon dioxide, unreacted methane, and steam, wherein said product contains a reduced concentration of higher hydrocarbons less than the initial concentration of higher hydrocarbons, to prereform the feedstock.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: November 11, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Shankar Nataraj, Kevin Boyle Fogash, James Richard O'Leary, William Robert Licht, Sanjay Mehta, Eugene S. Genkin
  • Patent number: 7429373
    Abstract: Process for producing hydrogen comprising reacting at least one hydrocarbon and steam in the presence of a complex metal oxide and a steam-hydrocarbon reforming catalyst in a production step under reaction conditions sufficient to form hydrogen gas and a spent complex metal oxide, wherein the complex metal oxide is represented by the formula AxByOn wherein A represents at least one metallic element having an oxidation state ranging from +1 to +3, inclusive, wherein the metallic element is capable of forming a metal carbonate; x is a number from 1 to 10, inclusive; B represents at least one metallic element having an oxidation state ranging from +1 to +7, inclusive; y is a number from 1 to 10, inclusive; and n represents a value such that the complex metal oxide is rendered electrically neutral.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: September 30, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Guido Peter Pez, Robert Quinn, Shankar Nataraj
  • Patent number: 7427388
    Abstract: A process for prereforming natural gas containing higher hydrocarbons and methane, includes providing a reactor having a nickel catalyst; providing steam, hydrogen, and natural gas containing higher hydrocarbons and methane to the reactor; adding an oxidant to the feedstock, wherein the oxidant provides oxygen in an amount less than the amount required to partially oxidize all higher hydrocarbons to a mixture of carbon monoxide and hydrogen; reacting the oxidant with higher hydrocarbons; and forming a gaseous mixture containing methane, carbon monoxide, carbon dioxide, steam and hydrogen substantially free of higher hydrocarbons and oxygen. The gaseous mixture can be reformed. An apparatus for performing the process includes a reactor; a feedstock source containing steam, hydrogen, and natural gas comprising higher hydrocarbons and methane; an oxidant source; valves and pipes connecting the natural gas source, the oxidant source and the reactor; and a nickel-containing catalyst within the reactor.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: September 23, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Shankar Nataraj, John Nelson Armor, John Michael Repasky
  • Publication number: 20080164442
    Abstract: A process for generating synthesis gas wherein a reactant gas mixture comprising steam and a light hydrocarbon is introduced into a tubular reactor comprising a catalyzed structured packing at higher inlet mass rates than conventional tubular reactors containing random packing catalyst pellets or catalyzed structure packing.
    Type: Application
    Filed: January 10, 2007
    Publication date: July 10, 2008
    Inventors: Shankar Nataraj, Robert Roger Broekhuis, Diwakar Garg, Xiaoyi He, Xianming Jimmy Li
  • Patent number: 7354562
    Abstract: A process for producing a high temperature COx-lean product gas from a high temperature COx-containing feed gas, includes: providing a sorption enhanced reactor containing a first adsorbent, a shift catalyst and a second adsorbent; feeding into the reactor a feed gas containing H2, H2O, CO and CO2; contacting the feed gas with the first adsorbent to provide a CO2 depleted feed gas; contacting the CO2 depleted feed gas with the shift catalyst to form a product mixture comprising CO2 and H2; and contacting the product mixture with a mixture of second adsorbent and shift catalyst to produce the product gas, which contains at least 50 vol. % H2, and less than 5 combined vol. % of CO2 and CO. The adsorbent is a high temperature adsorbent for a Sorption Enhanced Reaction process, such as K2CO3 promoted hydrotalcites, modified double-layered hydroxides, spinels, modified spinels, and magnesium oxides.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: April 8, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Hon Sing Ying, Shankar Nataraj, Jeffrey Raymond Hufton, Jianguo Xu, Rodney John Allam, Sarah Jane Dulley
  • Patent number: 7335247
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 26, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Publication number: 20070172419
    Abstract: The present invention relates to a process for producing a hydrogen-containing gas. The process comprises introducing a regeneration gas into a hydrogen reaction vessel containing solid packing material thereby at least partially regenerating the solid packing material and forming an effluent gas from the regeneration gas. At least a portion of the effluent gas is introduced into another hydrogen reaction vessel containing solid packing material. The effluent gas may be used, for example, to purge the other hydrogen reaction vessel and/or regenerate the solid packing material in the other hydrogen reaction vessel. Solid packing materials may include at least one of a complex metal oxide, a steam hydrocarbon reforming catalyst, an oxygen ion conducting ceramic, a hydrocarbon partial oxidation catalyst, and a hydrocarbon cracking catalyst.
    Type: Application
    Filed: January 25, 2006
    Publication date: July 26, 2007
    Inventors: Xiang-Dong Peng, Shankar Nataraj
  • Publication number: 20070137478
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Application
    Filed: January 29, 2007
    Publication date: June 21, 2007
    Inventors: VanEric Stein, Michael Carolan, Christopher Chen, Phillip Armstrong, Harold Wahle, Theodore Ohrn, Kurt Kneidel, Keith Rackers, James Blake, Shankar Nataraj, Rene Hendrik Elias van Doom, Merrill Wilson
  • Patent number: 7179323
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 20, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Publication number: 20060292069
    Abstract: Process for producing hydrogen comprising reacting at least one hydrocarbon and steam in the presence of a complex metal oxide and a steam-hydrocarbon reforming catalyst in a production step under reaction conditions sufficient to form hydrogen gas and a spent complex metal oxide, wherein the complex metal oxide is represented by the formula AxByOn wherein A represents at least one metallic element having an oxidation state ranging from +1 to +3, inclusive, wherein the metallic element is capable of forming a metal carbonate; x is a number from 1 to 10, inclusive; B represents at least one metallic element having an oxidation state ranging from +1 to +7, inclusive; y is a number from 1 to 10, inclusive; and n represents a value such that the complex metal oxide is rendered electrically neutral.
    Type: Application
    Filed: June 24, 2005
    Publication date: December 28, 2006
    Inventors: Guido Pez, Robert Quinn, Shankar Nataraj
  • Publication number: 20060128818
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Application
    Filed: February 24, 2003
    Publication date: June 15, 2006
    Inventors: Shoou-I Wang, John Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Publication number: 20060008413
    Abstract: A process for adiabatically prereforming a feedstock, includes: providing an adiabatic reactor; providing a catalyst containing 1-20 wt. % nickel and 0.4-5 wt. % potassium, wherein the catalyst has an overall catalyst porosity of 25-50% with 20-80% of the overall catalyst porosity contributed by pores having pore diameters of at least 500 ?; providing the feedstock containing natural gas and steam, wherein the natural gas contains an initial concentration of higher hydrocarbons, and a ratio of steam to natural gas in the feedstock is from 1.5:1 to 5:1; preheating the feedstock to a temperature of 300-700° C. to provide a heated feedstock; providing the heated feedstock to the reactor; and producing a product containing hydrogen, carbon monoxide, carbon dioxide, unreacted methane, and steam, wherein said product contains a reduced concentration of higher hydrocarbons less than the initial concentration of higher hydrocarbons, to prereform the feedstock.
    Type: Application
    Filed: July 8, 2004
    Publication date: January 12, 2006
    Inventors: Diwakar Garg, Shankar Nataraj, Kevin Fogash, James O'Leary, William Licht, Sanjay Mehta, Eugene Genkin
  • Publication number: 20050207970
    Abstract: A process for prereforming natural gas containing higher hydrocarbons and methane, includes providing a reactor having a nickel catalyst; providing steam, hydrogen, and natural gas containing higher hydrocarbons and methane to the reactor; adding an oxidant to the feedstock, wherein the oxidant provides oxygen in an amount less than the amount required to partially oxidize all higher hydrocarbons to a mixture of carbon monoxide and hydrogen; reacting the oxidant with higher hydrocarbons; and forming a gaseous mixture containing methane, carbon monoxide, carbon dioxide, steam and hydrogen substantially free of higher hydrocarbons and oxygen. The gaseous mixture can be reformed. An apparatus for performing the process includes a reactor; a feedstock source containing steam, hydrogen, and natural gas comprising higher hydrocarbons and methane; an oxidant source; valves and pipes connecting the natural gas source, the oxidant source and the reactor; and a nickel-containing catalyst within the reactor.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 22, 2005
    Inventors: Diwakar Garg, Shankar Nataraj, John Armor, John Repasky
  • Publication number: 20050102901
    Abstract: A system is set forth for the exothermic generation of soot depleted syngas comprising (i) reacting a hydrocarbon-containing fuel with an oxygen containing gas in a first reactor to produce the syngas and byproducts comprising CO2, H2O and soot; and (ii) introducing the syngas and byproducts into a second reactor containing a non-carbonaceous material that traps the soot for a sufficient time such that the majority of the byproduct soot is gasified via reaction with the byproduct CO2 and/or H2O to produce a syngas stream that is depleted in the soot. The system is particularly suitable for the practice of heat exchange reforming wherein a portion of the heat is recovered from the soot depleted syngas stream and used as at least a portion of the heat to facilitate the additional production of syngas via the (endothermic) catalytic reforming of natural gas and steam.
    Type: Application
    Filed: November 18, 2003
    Publication date: May 19, 2005
    Inventors: William Licht, Shankar Nataraj, Xiang-Dong Peng, John Repasky
  • Publication number: 20050031531
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Application
    Filed: August 6, 2003
    Publication date: February 10, 2005
    Inventors: VanEric Edward Stein, Michael Carolan, Christopher Chen, Phillip Armstrong, Harold Wahle, Theodore Ohrn, Kurt Kneidel, Keith Rackers, James Blake, Shankar Nataraj, Rene Hendrik Elias van Doom, Merrill Wilson
  • Publication number: 20040081614
    Abstract: A process for producing a high temperature COx-lean product gas from a high temperature COx-containing feed gas, includes: providing a sorption enhanced reactor containing a first adsorbent, a shift catalyst and a second adsorbent; feeding into the reactor a feed gas containing H2, H2O, CO and CO2; contacting the feed gas with the first adsorbent to provide a CO2 depleted feed gas; contacting the CO2 depleted feed gas with the shift catalyst to form a product mixture comprising CO2 and H2; and contacting the product mixture with a mixture of second adsorbent and shift catalyst to produce the product gas, which contains at least 50 vol. % H2, and less than 5 combined vol. % of CO2 and CO. The adsorbent is a high temperature adsorbent for a Sorption Enhanced Reaction process, such as K2CO3 promoted hydrotalcites, modified double-layered hydroxides, spinels, modified spinels, and magnesium oxides.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: David Hon Sing Ying, Shankar Nataraj, Jeffrey Raymond Hufton, Jianguo Xu, Rodney John Allam, Sarah Jane Dulley
  • Publication number: 20030162846
    Abstract: Reactive diluent fluid is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched syngas which may be fed into a secondary reformer unit such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 28, 2003
    Inventors: Shoou-l Wang, Shankar Nataraj, John Michael Repasky
  • Patent number: 6592836
    Abstract: A process is provided which includes the steps of providing a CO-SER unit, feeding a feed gas of an equimolar mix of CO2 and H2 with a slight excess of CO2 to the CO-SER unit to produce a CO-SER product gas of CO, a small amount of CO2, and substantially no H2 at high pressure, providing a TSA unit having a plurality of adsorber vessels, each adsorber vessel having an adsorbent capable of selectively adsorbing CO2, the adsorber vessel being at high pressure and ambient temperature, and feeding the CO-SER product gas to one of the adsorber vessels in the TSA unit to selectively remove CO2 gas to produce a TSA product gas that is of high purity and of high pressure. The feeding continues to the one adsorber vessel until a point prior to CO2 breakthrough occurring. The process further includes regenerating any adsorber vessels having adsorbent that is substantially spent.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: July 15, 2003
    Inventors: Jeffrey Raymond Hufton, Shankar Nataraj
  • Patent number: 6527980
    Abstract: According to the present invention, hydrogen/carbon monoxide synthesis gas (also called syngas) is produced by injection of a second reactant stream into a hydrocarbon reformer at a location between the entry and discharge ends of the reformer. The second reactant stream can contain: carbon dioxide; a mixture of carbon dioxide and hydrocarbon; a mixture of hydrocarbon and steam, a mixture of carbon dioxide and steam; or a mixture of carbon dioxide with hydrocarbon and steam. All or part of the mixtures containing hydrocarbon and steam can be prereformed hydrocarbon in steam.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: March 4, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Thomas Michael Roden, Arthur Daniel Bixler, David Michael Nicholas, Shankar Nataraj
  • Publication number: 20020107294
    Abstract: A process for producing high purity carbon monoxide product gas is provided which includes the steps of providing a CO-SER unit, feeding a feed gas of an equimolar mix of CO2 and H2 with a slight excess of CO2 to the CO-SER unit to produce a CO-SER product gas of CO, a small amount of CO2, and substantially no H2 at high pressure, providing a TSA unit having a plurality of adsorber vessels, each adsorber vessel having an adsorbent capable of selectively adsorbing CO2, the adsorber vessel being at high pressure and ambient temperature, and feeding the CO-SER product gas to one of the adsorber vessels in the TSA unit to selectively remove CO2 gas to produce a TSA product gas that is of high purity and of high pressure. The feeding continues to the one adsorber vessel until a point prior to CO2 breakthrough occurring, wherein the adsorbent is substantially spent. The other adsorber vessels are then sequentially fed.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 8, 2002
    Inventors: Jeffrey Raymond Hufton, Shankar Nataraj