Patents by Inventor Shankara Narayanan Keelapandal Ramamoorthy
Shankara Narayanan Keelapandal Ramamoorthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10604611Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads of an aqueous solution comprising water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, recovering polymer beads, and then cleaning the non-aqueous liquid in which the process comprises providing the non-aqueous liquid in a vessel (1), forming a suspension of monomer beads from the aqueous monomer or monomer blend in the non-aqueous liquid, initiating polymerisation to form polymerising beads, removing a suspension of the polymer beads in non-aqueous liquid from the vessel and recovering, water soluble or water swellable polymer beads from the suspension, in which the non-aqueous liquid contains impurities which comprise particles, and then transferring the non-aqueous liquid from the suspension to a cleaning stage, in which the cleaning stage provides a cleaned nonType: GrantFiled: July 29, 2014Date of Patent: March 31, 2020Assignee: BASF SEInventors: John Scott Barratt, Aleksandra Jelicic, Pascal Hesse, Oliver Soetje, Robert Haschick, Gabriela Eugenia Fonseca Zepeda, Shankara Narayanan Keelapandal Ramamoorthy, Sandra Jeck, Jelan Kuhn
-
Patent number: 10370461Abstract: A reverse-phase suspension polymerization process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerizing the monomer or monomer blend, to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point initiating polymerization of the aqueous monomer beads to form polymerizing beads, wherein the polymerizing beads form polymer beads when they reach the polymer bead discharge point, removing a suspensiType: GrantFiled: July 29, 2014Date of Patent: August 6, 2019Assignee: BASF SEInventors: Pascal Hesse, Aleksandra Jelicic, Gabriela Eugenia Fonseca Zepeda, Robert Haschick, Shankara Narayanan Keelapandal Ramamoorthy, Gareth Ian Naylor, John Scott Barratt, Oliver Soetje, Marcel Lievre, Florian Rainau, Mark Lebkuecher
-
Patent number: 9765167Abstract: A reverse-phase suspension polymerization process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerizing the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises, providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point subjecting the aqueous monomer beads to polymerization conditions to initiate polymerization to form polymerizing beads, wherein the polymerizing beads have formed polymer beads when they reach the polyType: GrantFiled: July 29, 2014Date of Patent: September 19, 2017Assignee: BASF SEInventors: Robert Haschick, Aleksandra Jelicic, John Scott Barratt, Pascal Hesse, Oliver Soetje, Gabriela Eugenia Fonseca Zepeda, Shankara Narayanan Keelapandal Ramamoorthy, Bjoern Langlotz
-
Patent number: 9732174Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerizing the monomer or monomers and transferring the polymerizing monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerized product; iii) flowing the partially polymerized product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerized in the partially polymerized product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerization in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), chType: GrantFiled: March 4, 2016Date of Patent: August 15, 2017Assignee: BASF SEInventors: Shankara Narayanan Keelapandal Ramamoorthy, Oliver Soetje, John Scott Barratt, Gabriela Eugenia Fonseca Zepeda
-
Patent number: 9428613Abstract: Process for producing polyamides that are stable during processing, by treating the polyamide during the solid-phase postcondensation process with a gas which comprises carrier gas (inert gas), water, and acid, or an anhydride or lactone or a mixture of these or, respectively, comprises ammonia, or amine, or a mixture of these, at a temperature from 130 to 200° C. and at a pressure of from 0.01 to 10 bar.Type: GrantFiled: November 27, 2013Date of Patent: August 30, 2016Assignee: BASF SEInventors: Rolf-Egbert Grützner, Shankara Narayanan Keelapandal Ramamoorthy, Faissal-Ali El-Toufaili, Achim Gerstlauer, Achim Stammer
-
Patent number: 9382364Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerising the monomer or monomers and transferring the polymerising monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerised product; iii) flowing the partially polymerised product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerised in the partially polymerised product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerisation in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), charType: GrantFiled: September 23, 2013Date of Patent: July 5, 2016Assignee: BASF SEInventors: Shankara Narayanan Keelapandal Ramamoorthy, Oliver Soetje, John Scott Barratt, Gabriela Eugenia Fonseca Zepeda
-
Publication number: 20160185889Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerising the monomer or monomers and transferring the polymerising monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerised product; iii) flowing the partially polymerised product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerised in the partially polymerised product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerisation in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), chaType: ApplicationFiled: March 4, 2016Publication date: June 30, 2016Applicant: BASF SEInventors: Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Oliver Soetje, John Scott Barratt, Gabriela Eugenia Fonseca Zepeda
-
Publication number: 20160159939Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend, to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point initiating polymerisation of the aqueous monomer beads to form polymerising beads, wherein the polymerising beads form polymer beads when they reach the polymer bead discharge point, removing a suspensiType: ApplicationFiled: July 29, 2014Publication date: June 9, 2016Applicant: BASF SEInventors: Pascal HESSE, Aleksandra JELICIC, Gabriela Eugenia FONSECA ZEPEDA, Robert HASCHICK, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Gareth Ian NAYLOR, John Scott BARRATT, Oliver SOETJE, Marcel LIEVRE, Florian RAINAU, Mark LEBKUECHER
-
Publication number: 20160159955Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads comprising an aqueous solution of water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, and recovering polymer beads, in which the process comprises, providing in a vessel (1) a volume (2) of non-aqueous liquid wherein the volume of non-aqueous liquid extends between at least one polymer bead discharge point (3) and at least one monomer feed point (4), feeding the aqueous monomer or monomer blend through orifices (5) into, or onto, the non-aqueous liquid to form aqueous monomer beads, allowing the aqueous monomer beads to flow towards the polymer bead discharge point subjecting the aqueous monomer beads to polymerisation conditions to initiate polymerisation to form polymerising beads, wherein the polymerising beads have formed polymer beads when they reach the polyType: ApplicationFiled: July 29, 2014Publication date: June 9, 2016Applicant: BASF SEInventors: Robert HASCHICK, Aleksandra JELICIC, John Scott BARRATT, Pascal HESSE, Oliver SOETJE, Gabriela Eugenia FONSECA ZEPEDA, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Bjoern LANGLOTZ
-
Publication number: 20160159958Abstract: A reverse-phase suspension polymerisation process for the manufacture of polymer beads comprising forming aqueous monomer beads of an aqueous solution comprising water-soluble ethylenically unsaturated monomer or monomer blend and polymerising the monomer or monomer blend to form polymer beads while suspended in a non-aqueous liquid, recovering polymer beads, and then cleaning the non-aqueous liquid in which the process comprises providing the non-aqueous liquid in a vessel (1), forming a suspension of monomer beads from the aqueous monomer or monomer blend in the non-aqueous liquid, initiating polymerisation to form polymerising beads, removing a suspension of the polymer beads in non-aqueous liquid from the vessel and recovering, water soluble or water swellable polymer beads from the suspension, in which the non-aqueous liquid contains impurities which comprise particles, and then transferring the non-aqueous liquid from the suspension to a cleaning stage, in which the cleaning stage provides a cleaned nonType: ApplicationFiled: July 29, 2014Publication date: June 9, 2016Applicant: BASF SEInventors: John Scott BARRATT, Aleksandra JELICIC, Pascal HESSE, Oliver SOETJE, Robert HASCHICK, Gabriela Eugenia FONSECA ZEPEDA, Shankara Narayanan KEELAPANDAL RAMAMOORTHY, Sandra JECK, Jelan KUHN
-
Patent number: 9296896Abstract: Process for producing polymer mixtures comprising at least one polymer (A) and comprising at least one component (B), comprising the following steps: (a) providing (A) in the form of granules, (b) providing (B) in the form of liquid solution and/or dispersion in a dispersion medium, (c) by means of an atomizer, applying droplets of the solution and/or dispersion provided in step (b) to the granules provided in step (a), (d) drying the granules obtained in step (c), and (e) optionally carrying out one or more shaping steps.Type: GrantFiled: November 22, 2011Date of Patent: March 29, 2016Assignee: BASF SEInventors: Sachin Jain, Shankara Narayanan Keelapandal Ramamoorthy
-
Publication number: 20150232600Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerising the monomer or monomers and transferring the polymerising monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerised product; iii) flowing the partially polymerised product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerised in the partially polymerised product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerisation in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), charType: ApplicationFiled: September 23, 2013Publication date: August 20, 2015Applicant: BASF SEInventors: Shankara Narayanan Keelapandal Ramamoorthy, Oliver Soetje, John Scott Barrat, Gabriela Eugenia Fonseca Zepeda
-
Publication number: 20140088268Abstract: Process for producing polyamides that are stable during processing, by treating the polyamide during the solid-phase postcondensation process with a gas which comprises carrier gas (inert gas), water, and acid, or an anhydride or lactone or a mixture of these or, respectively, comprises ammonia, or amine, or a mixture of these, at a temperature from 130 to 200° C. and at a pressure of from 0.01 to 10 bar.Type: ApplicationFiled: November 27, 2013Publication date: March 27, 2014Applicant: BASF SEInventors: Rolf-Egbert Grützner, Shankara Narayanan Keelapandal Ramamoorthy, Faissal-Ali EI-Toufaili, Achim Gerstlauer, Achim Stammer
-
Publication number: 20120128877Abstract: Process for producing polymer mixtures comprising at least one polymer (A) and comprising at least one component (B), comprising the following steps: (a) providing (A) in the form of granules, (b) providing (B) in the form of liquid solution and/or dispersion in a dispersion medium, (c) by means of an atomizer, applying droplets of the solution and/or dispersion provided in step (b) to the granules provided in step (a), (d) drying the granules obtained in step (c), and (e) optionally carrying out one or more shaping steps.Type: ApplicationFiled: November 22, 2011Publication date: May 24, 2012Applicant: BASF SEInventors: Sachin Jain, Shankara Narayanan Keelapandal Ramamoorthy
-
Publication number: 20120065339Abstract: Process for producing polyamides that are stable during processing, by treating the polyamide during the solid-phase postcondensation process with a gas which comprises carrier gas (inert gas), water, and acid, or an anhydride or lactone or a mixture of these or, respectively, comprises ammonia, or amine, or a mixture of these, at a temperature from 130 to 200° C. and at a pressure of from 0.01 to 10 bar.Type: ApplicationFiled: September 7, 2011Publication date: March 15, 2012Applicant: BASF SEInventors: Rolf-Egbert Grützner, Shankara Narayanan Keelapandal Ramamoorthy, Faissal-Ali El-Toufaili, Achim Gerstlauer, Achim Stammer