Patents by Inventor Shankara S. Kalanur

Shankara S. Kalanur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10921302
    Abstract: Disclosed are a chemochromic nanoparticle, a method for manufacturing the chemochromic nanoparticle, and a hydrogen sensor comprising the chemochromic nanoparticle. In particular, the chemochromic nanoparticle has a core-shell structure such that the chemochromic nanoparticle and comprises a core comprising a hydrated or non-hydrated transition metal oxide; and a shell comprising a transition metal catalyst.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: February 16, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Ajou University Industry-Academic Cooperation Foundation
    Inventors: Yong Gyu Noh, Hyun Joon Lee, Hyo Sub Shim, Hyung Tak Seo, Yeong An Lee, Shankara S. Kalanur
  • Publication number: 20190339239
    Abstract: Disclosed are a chemochromic nanoparticle, a method for manufacturing the chemochromic nanoparticle, and a hydrogen sensor comprising the chemochromic nanoparticle. In particular, the chemochromic nanoparticle has a core-shell structure such that the chemochromic nanoparticle and comprises a core comprising a hydrated or non-hydrated transition metal oxide; and a shell comprising a transition metal catalyst.
    Type: Application
    Filed: July 11, 2019
    Publication date: November 7, 2019
    Inventors: Yong Gyu Noh, Hyun Joon Lee, Hyosub Shim, Hyung Tak Seo, Yeong An Lee, Shankara S. Kalanur
  • Patent number: 10094811
    Abstract: Disclosed are a hydrogen detection sensor and a method of manufacturing the same. The hydrogen detection sensor is manufactured by using hydrothermal synthesis method to synthesize a molybdenum oxide (MoO3) nanostructure, and irradiating UV light thereon to form an MoO3—Pd nanocomposite comprising the molybdenum oxide nanostructure with palladium (Pd) catalyst particles, and coating the MoO3—Pd nanocomposite on a substrate. As such, a visible color change from the MoO3 before and after exposure to hydrogen may be so obvious that the sensing or sensitivity of hydrogen and the long-term stability may be substantially improved. In addition, the manufacturing process is simple, and the manufacturing costs may be reduced.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: October 9, 2018
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Ajou University Industry-Academic Cooperation Foundation
    Inventors: Yong Gyu Noh, Ho June Bae, Hyung Tak Seo, Shankara S. Kalanur, Yeong An Lee
  • Patent number: 9846146
    Abstract: Disclosed herein is a hydrogen detecting sensor that includes a sulfide-metal catalyst, such that hydrogen gas can be detected visibly with naked eyes. Particularly, the hydrogen detecting sensor includes a substrate, a sulfide layer formed on the substrate and chemically discolored when exposed to hydrogen, and a metal catalytic layer formed on the sulfide layer.
    Type: Grant
    Filed: June 28, 2015
    Date of Patent: December 19, 2017
    Assignees: Hyundai Motor Company, Ajou University Industry-Academic Cooperation Foundation
    Inventors: Yong Gyu Noh, Ho June Bae, Hyung Tak Seo, Yeong An Lee, Shankara S. Kalanur
  • Publication number: 20170191970
    Abstract: Disclosed are a hydrogen detection sensor and a method of manufacturing the same. The hydrogen detection sensor is manufactured by using hydrothermal synthesis method to synthesize a molybdenum oxide (MoO3) nanostructure, and irradiating UV light thereon to form an MoO3—Pd nanocomposite comprising the molybdenum oxide nanostructure with palladium (Pd) catalyst particles, and coating the MoO3—Pd nanocomposite on a substrate. As such, a visible color change from the MoO3 before and after exposure to hydrogen may be so obvious that the sensing or sensitivity of hydrogen and the long-term stability may be substantially improved. In addition, the manufacturing process is simple, and the manufacturing costs may be reduced.
    Type: Application
    Filed: September 27, 2016
    Publication date: July 6, 2017
    Inventors: Yong Gyu Noh, Ho June Bae, Hyung Tak Seo, Shankara S. Kalanur, Yeong An Lee
  • Publication number: 20170059538
    Abstract: Disclosed are a chemochromic nanoparticle, a method for manufacturing the chemochromic nanoparticle, and a hydrogen sensor comprising the chemochromic nanoparticle. In particular, the chemochromic nanoparticle has a core-shell structure such that the chemochromic nanoparticle and comprises a core comprising a hydrated or non-hydrated transition metal oxide; and a shell comprising a transition metal catalyst.
    Type: Application
    Filed: April 26, 2016
    Publication date: March 2, 2017
    Inventors: Yong Gyu Noh, Hyun Joon Lee, Hyo Sub Shim, Hyung Tak Seo, Yeong An Lee, Shankara S. Kalanur
  • Publication number: 20160103107
    Abstract: Disclosed herein is a hydrogen detecting sensor that includes a sulfide-metal catalyst, such that hydrogen gas can be detected visibly with naked eyes. Particularly, the hydrogen detecting sensor includes a substrate, a sulfide layer formed on the substrate and chemically discolored when exposed to hydrogen, and a metal catalytic layer formed on the sulfide layer.
    Type: Application
    Filed: June 28, 2015
    Publication date: April 14, 2016
    Inventors: Yong Gyu Noh, Ho June Bae, Hyung Tak Seo, Yeong An Lee, Shankara S. Kalanur