Patents by Inventor Shankhadeep Das

Shankhadeep Das has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10843992
    Abstract: In one aspect, a hydroformylation reaction process comprises contacting an olefin, hydrogen, and CO in the presence of a homogeneous catalyst in a cylindrical reactor to provide a reaction fluid, wherein the reactor has a fixed height, and wherein a total mixing energy of at least 0.5 kW/m3 is delivered to the fluid in the reactor; removing a portion of the reaction fluid from the reactor; and returning at least a portion of the removed reaction fluid to the reactor, wherein the returning reaction fluid is introduced in at least two return locations positioned at a height that is less than 80% of the fixed height, wherein the at least two return locations are positioned above a location in the reactor where hydrogen and carbon monoxide are introduced to the reactor, and wherein at least 15% of the mixing energy is provided by the returning reaction fluid.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 24, 2020
    Assignee: Dow Technology Investments LLC
    Inventors: Michael C. Becker, Donald L. Campbell, Irvin B. Cox, Shankhadeep Das, Seshadri Kumar, Glenn A. Miller, Nilesh Parmar, George R. Phillips
  • Publication number: 20200140361
    Abstract: In one aspect, a hydroformylation reaction process comprises contacting an olefin, hydrogen, and CO in the presence of a homogeneous catalyst in a cylindrical reactor to provide a reaction fluid, wherein the reactor has a fixed height, and wherein a total mixing energy of at least 0.5 kW/m3 is delivered to the fluid in the reactor; removing a portion of the reaction fluid from the reactor; and returning at least a portion of the removed reaction fluid to the reactor, wherein the returning reaction fluid is introduced in at least two return locations positioned at a height that is less than 80% of the fixed height, wherein the at least two return locations are positioned above a location in the reactor where hydrogen and carbon monoxide are introduced to the reactor, and wherein at least 15% of the mixing energy is provided by the returning reaction fluid.
    Type: Application
    Filed: June 19, 2018
    Publication date: May 7, 2020
    Inventors: Michael C. Becker, Donald L. Campbell, Irvin B. Cox, Shankhadeep Das, Seshadri Kumar, Glenn A. Miller, Nilesh Parmar, George R. Phillips
  • Publication number: 20170247271
    Abstract: The present invention relates to a method for flocculating and dewatering oil sands fine tailings. Said method comprises mixing the aqueous mineral suspension with a poly(ethylene oxide) (co)polymer to form a dough-like material. The material is then dynamically mixed in an in-line reactor to break down the dough-like material to form microflocs having an average size of 1 to 500 microns, and to release water. The internal diameter of the in-line reactor is at most five times the internal diameter of the inlet pipe of the reactor. The suspension of microflocs has a viscosity of at most 1000 cP and a yield stress of at most 300 Pa.
    Type: Application
    Filed: July 31, 2015
    Publication date: August 31, 2017
    Applicant: Dow Global Technologies LLC
    Inventors: Paul A. Gillis, Jason S. Moore, Billy G. Smith, Michael D. Cloeter, Michael K. Poindexter, Carol E. Mohler, Wu Chen, Cole A. Witham, Justice Alaboson, Shankhadeep Das, Harpreet Singh