Patents by Inventor Shantanu Sarkar

Shantanu Sarkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220211331
    Abstract: This disclosure is directed to techniques for identifying a medical condition, such as an infection and/or a disease, from sensor data indicative of physiological parameters. In some examples, one example technique for identifying the medical condition includes process sensor data comprising data indicative of a plurality of physiological parameters for a patient comprising an impedance parameter, computing an index based upon values corresponding to at least two of the physiological parameters and based upon a comparison between the index and prediction criterion, generating, for display, output data corresponding to the comparison results, wherein the output data indicates a prediction of the medical condition in the patient if the comparison results indicate satisfaction of the prediction criterion.
    Type: Application
    Filed: December 21, 2021
    Publication date: July 7, 2022
    Inventors: Holly S. Norman, Douglas A. Hettrick, Mark J. Phelps, Shantanu Sarkar, Todd M. Zielinski
  • Publication number: 20220211332
    Abstract: A method of monitoring a patient using a system includes a medical device, a peripheral device configured to wirelessly communicate with the medical device, and processing circuitry. The method includes, by the processing circuitry, receiving sensor data collected by the medical device and evaluating the sensor data. The method further includes, based on the evaluation of the sensor data, outputting for display via the peripheral device at least one question relating to the sensor data collected by the medical device for a patient to answer. The method further includes receiving at least one answer via the peripheral device and determining, based on a combination of the sensor data and the at least one answer, a risk-level of the patient's health associated with at least one condition such as at least one of infection, stroke, sepsis, chronic obstructive pulmonary disease, cardiac arrhythmia, or myocardial infarction.
    Type: Application
    Filed: January 6, 2022
    Publication date: July 7, 2022
    Inventors: Wade M. Demmer, Vinod Sharma, Shantanu Sarkar, James R Peichel
  • Publication number: 20220193419
    Abstract: Techniques for using multiple physiological parameters to provide an early warning for worsening heart failure are described. A system is provided that monitors a multiple diagnostic parameters indicative of worsening heart failure. The parameters preferably include are least one parameter acquired from an implanted device, such as intrathoracic impedance. The system device derives an index of the likelihood of worsening heart failure based upon the parameters using a Bayesian approach and displays the resultant index for review by a physician.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Amul Y. Desai, Randolph M. Biallas, Holly S. Vitense, Jodi L. Redemske
  • Publication number: 20220160250
    Abstract: This disclosure is directed to techniques for detecting and mitigating inaccurate sensing in a medical system. In some examples, one or more sensors of the medical system may include at least one electrode configured to sense an impedance of a portion of a patient's body proximate to the electrode and processing circuitry of the medical system may detect an inaccuracy in the data corresponding to the one or more patient physiological parameters based upon data including at least the sensed impedance of the portion of the patient body; correct at least a portion of the inaccuracy in the data corresponding to the one or more patient physiological parameters; and generate, for display on a display device, output data indicating the inaccuracy in the data corresponding to the one or more patient physiological parameters.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 26, 2022
    Inventors: David A. Anderson, James H. Borowick, Hyun J. Yoon, Jon E. Thissen, Shantanu Sarkar, Ashley L. Galarneau, Jason C. Lee
  • Publication number: 20220071545
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Patent number: 11259736
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: March 1, 2022
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael Hudziak, Jerry Reiland, Erin Reisfeld
  • Publication number: 20220000421
    Abstract: This disclosure is directed to devices, systems, and techniques for determining an efficacy of a treatment program. For example, a medical device system includes a medical device including one or more sensors configured to generate a signal that indicates a parameter of a patient. Additionally, the medical device system includes processing circuitry configured to receive data indicative of a user selection of a reference time; determine a plurality of parameter values of the parameter based on a portion of the signal corresponding to a period of time including the reference time. Additionally, the processing circuitry is configured to identify, based on a first set of parameter values, a reference parameter value, calculate a parameter change value, and determine, based on the parameter change value, whether an improvement or a worsening of the patient has occurred responsive to a treatment administered beginning at the reference time.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 6, 2022
    Inventors: Ekaterina M. Ippolito, Shantanu Sarkar, Eduardo N. Warman, Joel R. Lauer
  • Publication number: 20210401350
    Abstract: An implantable medical device is configured to determine a first atrial arrhythmia score from ventricular events sensed by a sensing circuit of an implantable medical device and determine a second atrial arrhythmia score from an intraventricular signal comprising atrial mechanical event signals attendant to atrial systole and produced by a sensor of the implantable medical device. An atrial arrhythmia is detected based on the first atrial arrhythmia score and the second atrial arrhythmia score.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Inventors: Shantanu SARKAR, Wade M. DEMMER, Todd J. SHELDON, Vincent E. SPLETT
  • Publication number: 20210369167
    Abstract: Techniques for using multiple physiological parameters to provide an early warning for worsening heart failure are described. A medical device monitors a primary diagnostic parameter that is indicative of worsening heart failure, such as intrathoracic impedance or pressure, and one or more secondary diagnostic parameters. The medical device detects worsening heart failure in the patient based on the primary diagnostic parameter when an index that is changed over time based on the primary diagnostic parameter value is outside a range of values, termed the threshold zone. When the index is within the threshold zone, the medical device detects worsening heart failure in the patient based on the one or more secondary diagnostic parameters. Upon detecting worsening heart failure, the medical device may, for example, provide an alert that enables the patient to seek medical attention before experiencing a heart failure event.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Shantanu Sarkar, Douglas A. Hettrick, Robert W. Stadler
  • Patent number: 11172863
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: November 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Patent number: 11154249
    Abstract: In some examples, determining a health status includes using an implantable medical device configured for subcutaneous implantation and comprising at least one optical sensor. Processing circuitry of a system comprising the device may determine, for a patient, a current tissue oxygen saturation value based on a first signal received from the at least one optical sensor and a current pulsatile oxygen saturation value based on a second signal received from the at least one optical sensor. The processing circuitry may further compare the current tissue oxygen saturation and current pulsatile oxygen saturation values to corresponding baseline values, determine corresponding heart failure and pulmonary statuses of the patient based on the comparisons, and determine the health status of the patient based on the statuses.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: October 26, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jonathan L. Kuhn, James K. Carney, Shantanu Sarkar
  • Publication number: 20210307669
    Abstract: An example device for detecting one or more parameters of a cardiac signal is disclosed herein. The device includes one or more electrodes and sensing circuitry configured to sense a cardiac signal via the one or more electrodes. The device further includes processing circuitry configured to determine an R-wave of the cardiac signal and determine whether the R-wave is noisy. Based on the R-wave being noisy, the processing circuitry is configured to determine whether the cardiac signal around a determined T-wave is noisy. Based on the cardiac signal around the determined T-wave not being noisy, the processing circuitry is configured to determine a QT interval or a corrected QT interval based on the determined T-wave and the determined R-wave.
    Type: Application
    Filed: March 22, 2021
    Publication date: October 7, 2021
    Inventors: Gautham Rajagopal, Shantanu Sarkar
  • Publication number: 20210307668
    Abstract: An example device for detecting one or more parameters of a cardiac signal is disclosed herein. The device includes one or more electrodes and sensing circuitry configured to sense a cardiac signal via the one or more electrodes. The device further includes processing circuitry configured to determine an R-wave of the cardiac signal and determine a previous RR interval of the cardiac signal and a current RR interval of the cardiac signal based on the determined R-wave. The processing circuitry is further configured to determine a search window based on one or more of the current RR interval or the previous RR interval, determine a T-wave of the cardiac signal in the search window, and determine a QT interval based on the determined T-wave and the determined R-wave.
    Type: Application
    Filed: March 22, 2021
    Publication date: October 7, 2021
    Inventors: Gautham Rajagopal, Shantanu Sarkar
  • Patent number: 11123005
    Abstract: An implantable medical device is configured to determine a first atrial arrhythmia score from ventricular events sensed by a sensing circuit of an implantable medical device and determine a second atrial arrhythmia score from an intraventricular signal comprising atrial mechanical event signals attendant to atrial systole and produced by a sensor of the implantable medical device. An atrial arrhythmia is detected based on the first atrial arrhythmia score and the second atrial arrhythmia score.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: September 21, 2021
    Assignee: Medtronic, Inc
    Inventors: Shantanu Sarkar, Wade M. Demmer, Todd J. Sheldon, Vincent E. Splett
  • Patent number: 11116456
    Abstract: In some examples, determining a heart failure status of a patient using a medical device comprising a plurality of electrodes includes determining an estimated arterial pressure waveform of the patient based on an arterial impedance signal received from at least two of the plurality of electrodes. The estimated arterial pressure waveform may comprise a plurality of arterial pressure cycles. Each of the plurality of arterial pressure cycles may correspond to a different cardiac cycle of a plurality of cardiac cycles of the patient. At least one value of an intrinsic frequency of the corresponding arterial pressure cycle may be determined for at least some of the plurality of cardiac cycles and the heart failure status of the patient may be determined based on the at least one value of the intrinsic frequency.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Douglas A. Hettrick, John E. Burnes, Tommy D. Bennett, Shantanu Sarkar, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20210267528
    Abstract: A system and method for detecting and verifying bradycardia/asystole episodes includes sensing an electrogram (EGM) signal. The EGM signal is compared to a primary threshold to sense events in the EGM signal, and at least one of a bradycardia or an asystole is detected based on the comparison. In response to detecting at least one of a bradycardia or an asystole, the EGM signal is compared to a secondary threshold to sense events under-sensed by the primary threshold. The validity of the bradycardia or the asystole is determined based on the detected under-sensed events.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 2, 2021
    Inventors: Shantanu Sarkar, Michael L. Hudziak, Jerry D. Reiland, Erin N. Reisfeld
  • Publication number: 20210204885
    Abstract: A method for differentiating heart failure risk scores that includes receiving a current data transmission and acquiring patient metrics from a remote device, determining a daily heart failure risk score for each day occurring during a time period from a previous received data transmission to the current received data transmission based on the acquired patient metrics, determining a maximum daily heart failure risk score of the determined daily heart failure risk scores during a lookback window prior to the current received data transmission, determining a heart failure risk status alert for the received data transmission based on the temporal proximity of the determined maximum heart failure risk score and receipt of the current data transmission, selecting a type of notification based on the heart failure risk status differentiation, and indicating the transmission heart failure risk status and the heart failure risk status differentiation via the selected type of notification.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Vinod Sharma, Joel R. Lauer, Holly S. Norman, Kevin L. Wong, Shantanu Sarkar
  • Publication number: 20210128005
    Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
    Type: Application
    Filed: July 6, 2020
    Publication date: May 6, 2021
    Inventors: John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
  • Publication number: 20210105843
    Abstract: A method for secure call endpoint pairing is disclosed. The method includes starting, at a call endpoint, a pairing procedure with a wireless headset. Also, the method includes receiving a headset identifier from the wireless headset. Further, the method includes sending the headset identifier in a request to a headset registry server, and receiving, from the headset registry server, a response to the request. Additionally, the method includes terminating the pairing procedure based on the response from the headset registry server.
    Type: Application
    Filed: November 20, 2020
    Publication date: April 8, 2021
    Applicant: Plantronics, Inc.
    Inventor: Shantanu Sarkar
  • Publication number: 20210093220
    Abstract: Techniques for obtaining impedance data to provide an early warning for heart failure decompensation are described. An example device may be configured to measure subcutaneous impedance values, and increment an impedance score. In some examples, the device may use an adaptive threshold and fluid index in incrementing the impedance score. In some examples, the impedance score is compared to a threshold to determine a heart failure status of a patient. In some examples, may cause resets in fluid index values and/or determine positions or orientations of the device when determining the impedance score.
    Type: Application
    Filed: September 15, 2020
    Publication date: April 1, 2021
    Inventors: Shantanu Sarkar, Todd M. Zielinski, Brian B. Lee, Val D. Eisele, III, Eduardo N. Warman, Matthew T Reinke, Ekaterina M. Ippolito