Patents by Inventor Shantha Arcot-Krishnamurthy

Shantha Arcot-Krishnamurthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9522271
    Abstract: System and methods for programming and delivering electrical stimulation to treat hypertension are described. In various embodiments, an ambulatory stimulator system, such as an implantable medical device, can detect a respiration-mediated heart rate variation (RM-HRV), monitor the efficacy of hypertension therapy and adjust the stimulation parameters using the detected RM-HRV to achieve desired therapy outcome. In some embodiments, the system can be configured to synchronize the detected heart rates to one or more respiration cycles or respiration phases within the respiration cycles, and determine the RM-HRV using the heart rates synchronized with the respiration cycles or the respiration phases. The RM-HRV may be presented to the system operator to monitor the efficacy of the AHT therapy. The ambulatory stimulator system can adjust the stimulation parameters using at least the RM-HRV.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: December 20, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Eric A. Mokelke, David J. Ternes
  • Publication number: 20160345853
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 1, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Patent number: 9504819
    Abstract: A system for facilitating placement of a lead in or on a patient's heart includes a first lead apparatus, a second lead apparatus, a user interface, and a processor. The processor is configured to measure a distance parameter indicative of a distance between a reference sensor element at a right heart location and a lead apparatus sensor element at each of a plurality of left heart locations in either the left ventricle or a coronary venous pathway, determine a separation distance for each of the plurality of left heart locations from the right heart location based on the distance parameter measurements, and determine that the separation distance for a location of the plurality of left heart locations from the right heart location is less than a threshold distance based on the separation distance for the location. The threshold distance representative of unsuitability for pacing.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: November 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Quan Ni, Michael J. Stucky, Allan C. Shuros
  • Publication number: 20160331267
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on a signal parameter of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 9439578
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 13, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Patent number: 9427167
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on amplitudes of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 30, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 9393415
    Abstract: A device embodiment is configured to deliver vagal stimulation therapy (VST) to a vagus nerve of a patient. The device embodiment includes a neural stimulator, an implantable impedance sensor and an impedance analyzer. The neural stimulator is configured to deliver the VST to the vagus nerve in a cervical region of the patient. The implantable impedance sensor is configured to detect impedance changes in a cervical region of the patient caused by laryngeal vibrations. The impedance sensor is configured to generate sensed impedance values. The impedance analyzer is configured to analyze the sensed impedance values generated by the sensor. The analyzer is configured to detect laryngeal vibrations or cough from the sensed impedance values.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Yi Zhang, John D. Hatlestad
  • Patent number: 9393417
    Abstract: A device embodiment is configured to deliver vagal stimulation therapy (VST) to a vagus nerve of a patient. The device embodiment includes a neural stimulator, an implantable pressure sensor, and a pressure analyzer. The neural stimulator is configured to deliver the VST to the vagus nerve in a cervical region of the patient. The implantable pressure sensor is configured to be implanted in the cervical region and to detect pressure changes in the cervical region caused by laryngeal vibrations. The pressure sensor is configured to generate sensed pressure values. The pressure analyzer is configured to analyze the sensed pressure values generated by the pressure sensor. The analyzer is configured to detect laryngeal vibrations or cough from the sensed pressure values.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Barun Maskara
  • Publication number: 20160199653
    Abstract: Some embodiments provide a method, comprising performing a neural stimulation test routine for stimulating a neural target in a cervical region of a patient, wherein for each of a plurality of head positions, performing the neural stimulation test routine includes testing a plurality of electrode configurations. The method further comprises recording threshold data for each of the tested electrode configurations for the plurality of head positions, and recommending an electrode configuration based on the recorded threshold data.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventors: Shantha Arcot-Krishnamurthy, Stephen B. Ruble, Jason J. Hamann, Juan Gabriel Hincapie Ordonez, David J. Ternes
  • Publication number: 20160184578
    Abstract: A system for facilitating placement of a lead in or on a patient's heart includes a first lead apparatus, a second lead apparatus, a user interface, and a processor. The processor is configured to measure a distance parameter indicative of a distance between a reference sensor element at a right heart location and a lead apparatus sensor element at each of a plurality of left heart locations in either the left ventricle or a coronary venous pathway, determine a separation distance for each of the plurality of left heart locations from the right heart location based on the distance parameter measurements, and determine that the separation distance for a location of the plurality of left heart locations from the right heart location is less than a threshold distance based on the separation distance for the location. The threshold distance representative of unsuitability for pacing.
    Type: Application
    Filed: September 1, 2015
    Publication date: June 30, 2016
    Inventors: Shantha Arcot-Krishnamurthy, Quan Ni, Michael J. Stucky, Allan C. Shuros
  • Patent number: 9332920
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes each having an electrode location and configured to detect activation signals of intrinsic physiological activity within an anatomical structure. A mapping processor is associated with the plurality of mapping electrodes and is configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The mapping processor is further configured to analyze the recorded activation signals to identify at least one recurring pattern based on a relationship between a timing of the detected activation signals and the electrode locations of the mapping electrode associated with each detected activation signal.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Shibaji Shome
  • Patent number: 9314627
    Abstract: Some embodiments provide a method, comprising performing a neural stimulation test routine for stimulating a neural target in a cervical region of a patient, wherein for each of a plurality of head positions, performing the neural stimulation test routine includes testing a plurality of electrode configurations. The method further comprises recording threshold data for each of the tested electrode configurations for the plurality of head positions, and recommending an electrode configuration based on the recorded threshold data.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Stephen Ruble, Jason J. Hamann, Juan Gabriel Hincapie Ordonez, David J. Ternes
  • Publication number: 20160089050
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Patent number: 9278217
    Abstract: Described are methods and devices for improving diastolic function with electrostimulation in heart failure patients who exhibit relatively normal systolic function. Such patients are characterized by impaired myocardial relaxation during diastole that prevents adequate filling of the ventricles during diastole to thereby reduce cardiac output. An implantable device is described for effecting strategic and periodic stimulation of the sympathetic nervous system to elicit myocardial adrenergic activation for improved myocardial relaxation.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 8, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Guy Alvarez
  • Patent number: 9186080
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. The activation signals are used to determine a dominant frequency for each electrode from which a wavefront vector for each electrode is determined based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrodes. An anatomical map is generated based on the determined wavefront vectors.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: November 17, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Shibaji Shome, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Jacob Laughner
  • Patent number: 9186512
    Abstract: An apparatus comprises an implantable sensor and a detection circuit. The implantable sensor provides a physiologic sensor signal and is to be positioned at a lymph node of a subject. The detection circuit detects a change in a physiologic parameter of the lymph node that exceeds a threshold change, and deems that the change in the physiologic parameter indicates a change in inflammation of an organ associated with the lymph node.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: November 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Craig Stolen
  • Publication number: 20150290462
    Abstract: A neurostimulation system includes a neural stimulation lead having a proximal portion and a distal portion and including a plurality of electrodes along the distal portion. The plurality of electrodes are configured for positioning proximate a portion of the autonomic nervous system. A neural stimulation circuit, coupled to the plurality of electrodes, delivers neural stimulation pulses to the plurality of electrodes. A processor and controller is configured to control the neural stimulation circuit to deliver first neural stimulation pulses to each of a plurality of electrode configurations. Each electrode configuration includes one or more of the plurality of electrodes. The processor and controller is further configured to receive information related to motor fiber activity that is induced in response to delivery of the first neural stimulation pulses to each of the plurality of electrode configurations and to identify the electrode configurations that induce the motor fiber activity.
    Type: Application
    Filed: June 8, 2015
    Publication date: October 15, 2015
    Inventors: Shantha Arcot-Krishnamurthy, David J. Ternes, Jason J. Hamann, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble
  • Patent number: 9155894
    Abstract: Some embodiments provide a method comprising delivering neural stimulation for a neural stimulation therapy according to a programmed schedule, detecting a swallow event, and responding to the detected swallow event by overriding the programmed schedule.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 13, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Shantha Arcot-Krishnamurthy
  • Patent number: 9149631
    Abstract: Systems and methods facilitate placement of a lead in or on a patient's heart. At least one reference sensor is positioned at a right heart location of a patient's heart and a cardiac lead apparatus comprising at least one lead apparatus sensor is advanced to a plurality of left heart locations. Using the reference sensor and the lead apparatus sensor, a distance parameter indicative of a distance between the reference and lead apparatus sensors is measured for each of the plurality of left heart locations. Strain or stress estimates are determined for the plurality of left heart locations derived from the distance parameter measurements. Using the strain or stress estimates, a physician perceivable output is produced indicating suitability of the left heart locations as pacing sites.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 6, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Quan Ni, Michael Stucky, Allan C. Shuros
  • Patent number: 9144391
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 29, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha