Patents by Inventor Shanwen Tao

Shanwen Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058800
    Abstract: A composition for catalysis of a Haber-Bosch process to produce ammonia; a process employing the composition and an anion vacant lattice for use in the process. The composition comprises an anion vacant lattice and a Haber-Bosch catalyst (e.g. Fe or Ru). Suitable anion vacant lattices include oxynitrides and oxides, which may be doped or undoped, including CeaMbO2-xNy??(Formula III) M is one or more elements with a valence lower than 4. “a” and “b” are independently in the range 0.05 to 0.95, with the proviso that “a” and “b” together sum to 1 (approximately). X is greater than 0 and less than 2. Y is greater than zero and less than or equal to X.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Shanwen Tao, John Humphreys
  • Publication number: 20230183090
    Abstract: A solid ionic conducting material for use in an electrochemical device comprises an oxyhydroxide or hydrated oxide derived from of an oxide with a perovskite, Brownmillerite, layered oxide, and/or K4CdCl6 structure, the elemental composition of the initial oxide being selected to provide suitable conduction properties for the derived anhydrous or hydrated oxyhydroxide or hydrated oxide. A method of making such a solid ionic conducting material, including treatment with water, and an electrochemical device incorporating such a solid ionic conducting material (optionally as an electrolyte) are also disclosed.
    Type: Application
    Filed: April 14, 2021
    Publication date: June 15, 2023
    Inventor: Shanwen Tao
  • Publication number: 20210114005
    Abstract: A composition for catalysis of a Haber-Bosch process comprises an anion vacant lattice and a Haber-Bosch catalyst (e.g. Fe Ru). Suitable anion vacant lattices include oxynitrides and oxides, which may be doped or undoped, including CeaMbO2-XNY (Formula III) M is one or more elements with a valence lower than +4. “a” and “b” are independently in the range 0.05 to 0.95, with the proviso that “a” and “b” together sum to 1 (approximately). X is greater than 0 and less than 2. Y is greater than zero and less than or equal to X. A process employing the composition produces ammonia.
    Type: Application
    Filed: April 24, 2019
    Publication date: April 22, 2021
    Inventors: Shanwen Tao, John Humphreys
  • Patent number: 8262896
    Abstract: The present invention relates to a method of producing hydrogen comprising: contacting steam 20 with a proton conducting membrane 7 supported on a porous redox stable substrate 8, through said substrate 8. The membrane 7 is non-permeable to molecular gas and to oxide ions. A DC voltage is applied across an anode 15 coupled to the substrate side of the membrane and a cathode 9,11 coupled to its other side so as to dissociate at least part of the steam 20, into protonic hydrogen and oxygen at said anode 15. The protonic hydrogen passes through the membrane and forms molecular hydrogen 23 at the cathode 9, 11.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 11, 2012
    Assignee: The University Court of the University of St. Andrews
    Inventors: John Thomas Sirr Irvine, Angela Kruth, Cristian Daniel Savaniu, Shanwen Tao
  • Publication number: 20120156582
    Abstract: The invention provides a method of operating a fuel cell comprising a solid anion exchange membrane, the method comprising contacting an anode in the fuel cell with urea, ammonia or an ammonium salt and contacting the cathode with an oxidant whereby to generate electricity.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 21, 2012
    Applicant: UNIVERSITY OF STRATHCLYDE
    Inventors: Shanwen Tao, Rong Lan
  • Publication number: 20110210010
    Abstract: The present invention relates to a method of producing hydrogen comprising: contacting steam 20 with a proton conducting membrane 7 supported on a porous redox stable substrate 8, through said substrate 8. The membrane 7 is non-permeable to molecular gas and to oxide ions. A DC voltage is applied across an anode 15 coupled to the substrate side of the membrane and a cathode 9,11 coupled to its other side so as to dissociate at least part of the steam 20, into protonic hydrogen and oxygen at said anode 15. The protonic hydrogen passes through the membrane and forms molecular hydrogen 23 at the cathode 9, 11.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 1, 2011
    Inventors: John Thomas Sirr Irvine, Angela Kruth, Cristian Daniel Savaniu, Shanwen Tao
  • Patent number: 7906006
    Abstract: The present invention relates to a method of producing hydrogen comprising: contacting steam (20) with a proton conducting membrane (7) supported on a porous redox stable substrate (8), through said substrate (8). The membrane (7) is non-permeable to molecular gas and to oxide ions. A DC voltage is applied across an anode (15) coupled to the substrate side of the membrane and a cathode (9, 11) coupled to its other side so as to dissociate at least part of the steam (20), into protonic hydrogen and oxygen at said anode (15). The protonic hydrogen passes through the membrane and forms molecular hydrogen (23) at the cathode (9, 11).
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 15, 2011
    Assignee: The University Court of the University of St. Andrews
    Inventors: John Thomas Sirr Irvine, Angela Kruth, Cristian Daniel Savaniu, Shanwen Tao
  • Patent number: 7504172
    Abstract: The present invention provides a material suitable for use in a solid oxide fuel cell, wherein the material is of an, optionally doped, double perovskite oxide material having the general formula (I): (LnaXb)e(Z1cZ2d)fOg (I) wherein Ln is selected from Y, La and a Lanthanide series element, or a combination of these and X also represents an element occupying the A site of a perovskite oxide and is selected from Sr, Ca and Ba, and Z1 and Z2 represent different elements occupying the B site of a perovskite oxide and are selected from Cr, Mn, Mg and Fe, and wherein a has a value from 0 to 1, preferably 0.7 to 1.0, b has a value of from 1 to 0, preferably 0.3 to 0, and each of c and d has a value of from 0.25 to 0.75, provided that a+b has a value of 1, and c+d, has a value of 1, and wherein e has a value of from 0.8 to 1, wherein f has a value of from 0.8 to 1, and g has a value of from 2.5 to 3.2.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 17, 2009
    Assignee: The University Court of the University of St. Andrews
    Inventors: John Thomas Sirr Irvine, Shanwen Tao
  • Publication number: 20070278092
    Abstract: The present invention relates to a method of producing hydrogen comprising: contacting steam 20 with a proton conducting membrane 7 supported on a porous redox stable substrate 8, through said substrate 8. The membrane 7 is non-permeable to molecular gas and to oxide ions. A DC voltage is applied across an anode 15 coupled to the substrate side of the membrane and a cathode 9,11 coupled to its other side so as to dissociate at least part of the steam 20, into protonic hydrogen and oxygen at said anode 15. The protonic hydrogen passes through the membrane and forms molecular hydrogen 23 at the cathode 9, 11.
    Type: Application
    Filed: March 24, 2005
    Publication date: December 6, 2007
    Inventors: John Irvine, Angela Kruth, Cristian Savaniu, Shanwen Tao
  • Publication number: 20050266297
    Abstract: The present invention provides a material suitable for use in a solid oxide fuel cell, wherein the material is of an, optionally doped, double perovskite oxide material having the general formula (I): (LnaXb)e(Z1cZ2d)fOg (I) wherein Ln is selected from Y, La and a Lanthanide series element, or a combination of these and X also represents an element occupying the A site of a perovskite oxide and is selected from Sr, Ca and Ba, and Z1 and Z2 represent different elements occupying the B site of a perovskite oxide and are selected from Cr, Mn, Mg and Fe, and wherein a has a value from 0 to 1, preferably 0.7 to 1.0, b has a value of from 1 to 0, preferably 0.3 to 0, and each of c and d has a value of from 0.25 to 0.75, provided that a+b has a value of 1, and c+d, has a value of 1, and wherein e has a value of from 0.8 to 1, wherein f has a value of from 0.8 to 1, and g has a value of from 2.5 to 3.2.
    Type: Application
    Filed: July 31, 2003
    Publication date: December 1, 2005
    Inventors: John Irvine, Shanwen Tao