Patents by Inventor Shao Ning Pei
Shao Ning Pei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240342704Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.Type: ApplicationFiled: November 9, 2023Publication date: October 17, 2024Applicant: Bruker Cellular Analysis, Inc.Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, Jr., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
-
Patent number: 11964275Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided. The devices include a conductive substrate having a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode electrically coupled to the dielectric layer and configured to be connected to a voltage source. The microfluidic devices also include a second electrode configured to be connected to the voltage source. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: GrantFiled: August 27, 2020Date of Patent: April 23, 2024Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Shao Ning Pei, Jian Gong, Alexander J. Mastroianni, Jason M. McEwen, Justin K. Valley
-
Patent number: 11684914Abstract: Methods of transferring material from a first device having an array of microwells to a second device is provided. In some examples, the first device and the second device are moved together toward a stopper plate and impinge on the stopper plate. In other examples, the first device and the second device are kept stationary and an impinging device is impacted on a mounting structure enclosing the first and second devices, causing material transfer from the microwells of the first device to the second device. Apparatus for carrying out the transfer of material is also disclosed.Type: GrantFiled: February 18, 2021Date of Patent: June 27, 2023Assignee: ISOLATION BIO INC.Inventors: Alexander Hallock, Peter Christey, Jude Dunne, Marc Glazer, Benjamin Lane, Joshua Gomes, Shreyas Ashok, Shao Ning Pei
-
Publication number: 20210252500Abstract: Methods of transferring material from a first device having an array of microwells to a second device is provided. In some examples, the first device and the second device are moved together toward a stopper plate and impinge on the stopper plate. In other examples, the first device and the second device are kept stationary and an impinging device is impacted on a mounting structure enclosing the first and second devices, causing material transfer from the microwells of the first device to the second device. Apparatus for carrying out the transfer of material is also disclosed.Type: ApplicationFiled: February 18, 2021Publication date: August 19, 2021Inventors: Alexander Hallock, Peter Christey, Jude Dunne, Marc Glazer, Benjamin Lane, Joshua Gomes, Shreyas Ashok, Shao Ning Pei
-
Publication number: 20210114020Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided. The devices include a conductive substrate having a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode electrically coupled to the dielectric layer and configured to be connected to a voltage source. The microfluidic devices also include a second electrode configured to be connected to the voltage source. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: ApplicationFiled: August 27, 2020Publication date: April 22, 2021Inventors: Randall D. LOWE, Jr., Shao Ning PEI, Jian GONG, Alexander J. MASTROIANNI, Jason M. MCEWEN, Justin K. VALLEY
-
Patent number: 10799865Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided. The devices include a conductive substrate having a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode electrically coupled to the dielectric layer and configured to be connected to a voltage source. The microfluidic devices also include a second electrode, optionally included in a cover, configured to be connected to the voltage source. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: GrantFiled: October 27, 2016Date of Patent: October 13, 2020Assignee: Berkeley Lights, Inc.Inventors: Randall D. Lowe, Jr., Shao Ning Pei, Jian Gong, Alexander J. Mastroianni, Jason M. McEwen, Justin K. Valley
-
Publication number: 20200299351Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to activate T Lymphocytes.Type: ApplicationFiled: January 15, 2020Publication date: September 24, 2020Applicant: Berkeley Lights, Inc.Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, JR., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
-
Publication number: 20200171501Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided for processing biological cells, e.g., for use in nucleic acid library preparation and/or synthesis (including amplification). The devices include a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode. Methods of nucleic acid library preparation and/or synthesis can involve providing reagents to cells or nucleic acids by merging appropriate droplets on a droplet actuation surface within a water-immiscible organic liquid and can be performed in the presence of appropriate surfactants. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: ApplicationFiled: October 23, 2019Publication date: June 4, 2020Applicant: Berkeley Lights, Inc.Inventors: Jason M. McEwen, Magali Soumillon, Shao Ning Pei, Randall D. Lowe, Jr., Samira A. Nedungadi, Volker L.S. Kurz, Jian Gong, Yara X. Mejia Gonzalez, Mckenzi S. Toh, Brian A. Rabkin, Jason C. Briggs, Darcy K. Kelly-Greene, James M. Porter, Jr.
-
Publication number: 20200139362Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.Type: ApplicationFiled: October 17, 2019Publication date: May 7, 2020Applicant: Berkeley Lights, Inc.Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Shao Ning PEI, Randall D. LOWE, Jr., Annamaria MOCCIARO, Kevin D. LOUTHERBACK, Yelena BRONEVETSKY, Guido K. STADLER, Andrew W. MCFARLAND, Kevin T. CHAPMAN, Duane SMITH, Natalie C. MARKS, Amanda L. GOODSELL
-
Patent number: 10569271Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.Type: GrantFiled: October 17, 2017Date of Patent: February 25, 2020Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, Jr., Justin K. Valley
-
Publication number: 20180099275Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.Type: ApplicationFiled: October 17, 2017Publication date: April 12, 2018Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, JR., Justin K. Valley
-
Patent number: 9815056Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.Type: GrantFiled: December 4, 2015Date of Patent: November 14, 2017Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, Jr., Justin K. Valley
-
Publication number: 20170173580Abstract: Microfluidic devices having an electrowetting configuration and an optimized droplet actuation surface are provided. The devices include a conductive substrate having a dielectric layer, a hydrophobic layer covalently bonded to the dielectric layer, and a first electrode electrically coupled to the dielectric layer and configured to be connected to a voltage source. The microfluidic devices also include a second electrode, optionally included in a cover, configured to be connected to the voltage source. The hydrophobic layer features self-associating molecules covalently bonded to a surface of the dielectric layer in a manner that produces a densely-packed monolayer that resists intercalation and or penetration by polar molecules or species.Type: ApplicationFiled: October 27, 2016Publication date: June 22, 2017Applicant: Berkeley Lights, Inc.Inventors: Randall D. LOWE, JR., Shao Ning PEI, Jian GONG, Alexander J. MASTROIANNI, Jason M. MCEWEN, Justin K. VALLEY
-
Publication number: 20160158748Abstract: Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.Type: ApplicationFiled: December 4, 2015Publication date: June 9, 2016Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BERKELEY LIGHTS, INC.Inventors: Ming-Chiang Wu, Jodi Tsu-An Loo, Shao Ning Pei, Gaetan L. Mathieu, Jian Gong, Randall D. Lowe, JR., Justin K. Valley