Patents by Inventor Shaohong SHI

Shaohong SHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11618182
    Abstract: A method for fabrication of a 3D printed part with high through-plane thermal conductivity is provided, where pure polymer particles and a carbon-based filler for heat conduction are subjected to milling and mixing in the mechanochemical reactor disclosed in Chinese patent ZL 95111258.9 under the controlled milling conditions including milling pan surface temperature, milling pan pressure, and number of milling cycles; then a resulting mixture is extruded to obtain 3D printing filaments; and finally, the 3D printing filaments are used to fabricate the 3D printed part with high through-plane thermal conductivity through fused deposition modeling (FDM) 3D printing. The fabrication method can realize the fabrication of a 3D printed part with high through-plane thermal conductivity through the FDM 3D printing technology, features simple process, continuous production, etc., and is suitable for the industrial production of thermally-conductive parts with complex structures.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: April 4, 2023
    Assignee: Sichuan University
    Inventors: Yinghong Chen, Jingjing Jing, Shaohong Shi, Ning Chen
  • Publication number: 20230009609
    Abstract: A method for fabrication of a 3D printed part with high through-plane thermal conductivity is provided, where pure polymer particles and a carbon-based filler for heat conduction are subjected to milling and mixing in the mechanochemical reactor disclosed in Chinese patent ZL 95111258.9 under the controlled milling conditions including milling pan surface temperature, milling pan pressure, and number of milling cycles; then a resulting mixture is extruded to obtain 3D printing filaments; and finally, the 3D printing filaments are used to fabricate the 3D printed part with high through-plane thermal conductivity through fused deposition modeling (FDM) 3D printing. The fabrication method can realize the fabrication of a 3D printed part with high through-plane thermal conductivity through the FDM 3D printing technology, features simple process, continuous production, etc., and is suitable for the industrial production of thermally-conductive parts with complex structures.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Sichuan University
    Inventors: Yinghong CHEN, Jingjing JING, Shaohong SHI, Ning CHEN