Patents by Inventor Shaoyi Jiang

Shaoyi Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230124554
    Abstract: Free-standing non-fouling polymers and polymeric compositions, monomers and macromonomers for making the polymers and polymeric compositions, objects made from the polymers and polymeric compositions, and methods for making and using the polymers and polymeric compositions
    Type: Application
    Filed: November 28, 2022
    Publication date: April 20, 2023
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Tao Bai, Jean-René Ella-Menye, Hsiang-Chieh Hung, Priyesh Jain, Andrew Sinclair, Harihara Subramanian Sundaram, Yang Li, Peng Zhang
  • Publication number: 20230014056
    Abstract: Zwitterionic carboxybetaine copolymers and their use in coatings to impart non-fouling and functionality to surfaces, particularly surfaces of blood-contacting medical devices.
    Type: Application
    Filed: September 12, 2022
    Publication date: January 19, 2023
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Xiaojie Lin, Jonathan Himmelfarb, Buddy D. Ratner
  • Patent number: 11512160
    Abstract: Free-standing non-fouling polymers and polymeric compositions, monomers and macromonomers for making the polymers and polymeric compositions, objects made from the polymers and polymeric compositions, and methods for making and using the polymers and polymeric compositions.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 29, 2022
    Assignee: University of Washington
    Inventors: Shaoyi Jiang, Tao Bai, Jean-René Ella-Menye, Hsiang-Chieh Hung, Priyesh Jain, Andrew Sinclair, Harihara Subramanian Sundaram, Yang Li, Peng Zhang
  • Patent number: 11441049
    Abstract: Zwitterionic carboxybetaine copolymers and their use in coatings to impart non-fouling and functionality to surfaces, particularly surfaces of blood-contacting medical devices.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: September 13, 2022
    Assignee: University of Washington
    Inventors: Shaoyi Jiang, Xiaojie Lin, Jonathan Himmelfarb, Buddy D. Ratner
  • Publication number: 20220041886
    Abstract: Zwitterionic carboxybetaine copolymers and their use in coatings to impart non-fouling and functionality to surfaces, particularly surfaces of blood-contacting medical devices.
    Type: Application
    Filed: March 13, 2020
    Publication date: February 10, 2022
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Xiaojie Lin, Jonathan Himmelfarb, Buddy D. Ratner
  • Publication number: 20210402000
    Abstract: High-polymer-density bioconjugate compositions including multi-layer polymer bioconjugates, polymer backfilled bioconjugates, and multi-layer polymer backfilled bioconjugates, and methods for making the compositions.
    Type: Application
    Filed: October 10, 2019
    Publication date: December 30, 2021
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Shaoyi Jiang, Zhefan Yuan, Liqian Niu
  • Publication number: 20210324010
    Abstract: Charged polypeptides, their conjugates, and fusion proteins comprising such polypeptides are disclosed. Inclusion of such a polypeptide in a fusion protein increases the protein's properties such as stability and circulation half-life, which results in a better therapeutic efficacy compared to an active protein alone. Thus, a fusion protein or a conjugate of the disclosure can be useful in developing a protein or peptide drug, treating or preventing diseases, disorders, or conditions, or improving a subjects health or wellbeing.
    Type: Application
    Filed: October 10, 2019
    Publication date: October 21, 2021
    Applicant: University of Washington
    Inventors: Caroline Tsao, Sijin Luozhong, Trevor Corrigan, Shaoyi Jiang, Erik Liu, Patrick McMullen
  • Patent number: 11105820
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 31, 2021
    Assignees: University of Washington through its Center for Commercialization, Bloodworks
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Publication number: 20210171783
    Abstract: Zwitterionic double network hydrogels, methods for making zwitterionic double network hydrogels, methods for using zwitterionic double network hydrogels, and articles made from and coated with zwitterionic double network hydrogels.
    Type: Application
    Filed: August 14, 2019
    Publication date: June 10, 2021
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Hsiang-Chieh Hung, Dianyu Dong, Caroline Tsao, Chenjue Tang, Joel MacArthur
  • Publication number: 20210088535
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Application
    Filed: September 28, 2020
    Publication date: March 25, 2021
    Applicants: University of Washington through its Center for Commercialization, Bloodworks
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Publication number: 20210023228
    Abstract: Zwitterionic phosphatidylserione (ZPS) monomers, ZPS polymers and ZPS copolymers, methods for making the ZPS monomers, ZPS polymers, and ZPS copolymers, compositions and materials that include ZPS polymers and ZPS copolymers, and methods for using the ZPS monomers, ZPS polymers, and ZPS copolymers.
    Type: Application
    Filed: March 25, 2019
    Publication date: January 28, 2021
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Bowen Li, Priyesh Jain
  • Publication number: 20200408785
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicants: University of Washington through its Center for Commercialization, Bloodworks
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Patent number: 10828398
    Abstract: Functionalized zwitterionic and mixed charge polymers and copolymers, methods for making the polymers and copolymers, hydrogels prepared from the functionalized zwitterionic and mixed charge polymers and copolymers, methods for making and using the hydrogels, and zwitterionic and mixed charge polymers and copolymers for administration for therapeutic agents.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 10, 2020
    Assignee: University of Washington
    Inventors: Shaoyi Jiang, Tao Bai, Harihara Subramanian Sundaram, Andrew William Sinclair, Jean-René Ella-Menye, Priyesh Jain
  • Patent number: 10794921
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: October 6, 2020
    Assignees: University of Washington, Puget Sound Blood Center
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Publication number: 20200289712
    Abstract: Functionalized zwitterionic and mixed charge polymers and copolymers, methods for making the polymers and copolymers, hydrogels prepared from the functionalized zwitterionic and mixed charge polymers and copolymers, methods for making and using the hydrogels, and zwitterionic and mixed charge polymers and copolymers for administration for therapeutic agents.
    Type: Application
    Filed: April 29, 2019
    Publication date: September 17, 2020
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Tao Bai, Harihara Subramanian Sundaram, Andrew William Sinclair, Jean-René Ella-Menye, Priyesh Jain
  • Publication number: 20200253192
    Abstract: Zwitterionic microgels, zwitterionic microgel assemblies, their formulations and methods for their use.
    Type: Application
    Filed: July 20, 2017
    Publication date: August 13, 2020
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Andrew Sinclair, Mary Elizabeth O'Kelly, Tao Bai, Priyesh Jain
  • Publication number: 20200123294
    Abstract: N-oxide and monomers, N-oxide polymers and copolymers, methods for making the N-oxide monomers, polymers, and copolymers, compositions and materials that include N-oxide polymers and copolymers, and methods for using the N-oxide monomers, N-oxide polymers, and N-oxide copolymers.
    Type: Application
    Filed: June 29, 2018
    Publication date: April 23, 2020
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Priyesh Jain, Jinrong Ma
  • Patent number: 10544312
    Abstract: Marine coatings including cationic polymers hydrolyzable to nonfouling zwitterionic polymers, coated marine surfaces, and methods for making and using the marine coatings.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: January 28, 2020
    Assignee: University of Washington
    Inventors: Shaoyi Jiang, Yuting Li, Hong Xue, Shengfu Chen
  • Publication number: 20190219570
    Abstract: Dual-functional nonfouling surfaces and materials, methods for making dual-functional nonfouling surfaces and materials, and devices that include dual-functional nonfouling surfaces and materials. The dual-functional surfaces are nonfouling surfaces that resist non-specific protein adsorption and cell adhesion. The dual-functional surfaces and materials include covalently coupled biomolecules (e.g., target binding partners) that impart specific biological activity thereto. The surfaces and materials are useful in medical diagnostics, biomaterials and bioprocessing, tissue engineering, and drug delivery.
    Type: Application
    Filed: August 27, 2018
    Publication date: July 18, 2019
    Applicant: University of Washington
    Inventors: Shaoyi Jiang, Zheng Zhang, Shengfu Chen, Hana Vaisocherova
  • Patent number: 10301413
    Abstract: Nonfouling copolymers and hydrogels comprising positively charged repeating units or latent positively charged repeating units and negatively charged units or latent positively charged units.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: May 28, 2019
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Shaoyi Jiang, Shengfu Chen