Patents by Inventor Sharad D. Bhagat

Sharad D. Bhagat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250130350
    Abstract: In some embodiments, a head-mounted augmented reality display system comprises one or more hybrid waveguides configured to display images by directing modulated light containing image information into the eyes of a viewer. Each hybrid waveguide is formed of two or more layers of different materials. A first (e.g., thicker) layer is a highly optically transparent core layer, and a second (e.g., thinner) auxiliary layer includes a pattern of protrusions and indentations, e.g., to form a diffractive optical element. The pattern may be formed by imprinting. The hybrid waveguide may include additional layers, e.g., forming a plurality of alternating core layers and thinner patterned layers. Multiple waveguides may be stacked to form an integrated eyepiece, with each waveguide configured to receive and output light of a different component color.
    Type: Application
    Filed: December 19, 2024
    Publication date: April 24, 2025
    Inventors: Christophe PEROZ, Chieh CHANG, Sharad D. BHAGAT
  • Publication number: 20250115015
    Abstract: Fabricating a high refractive index photonic device includes disposing a polymerizable composition on a first surface of a first substrate and contacting the polymerizable composition with a first surface of a second substrate, thereby spreading the polymerizable composition on the first surface of the first substrate. The polymerizable composition is cured to yield a polymeric structure having a first surface in contact with the first surface of the first substrate, a second surface opposite the first surface of the polymeric structure and in contact with the first surface of the second substrate, and a selected residual layer thickness between the first surface of the polymeric structure and the second surface of the polymeric structure in the range of 10 ?m to 1 cm. The polymeric structure is separated from the first substrate and the second substrate to yield a monolithic photonic device having a refractive index of at least 1.6.
    Type: Application
    Filed: December 16, 2024
    Publication date: April 10, 2025
    Inventors: Sharad D. Bhagat, Christophe Peroz, Vikramjit Singh, Frank Y. Xu
  • Publication number: 20250085468
    Abstract: A diffractive waveguide stack includes first, second, and third diffractive waveguides for guiding light in first, second, and third visible wavelength ranges, respectively. The first diffractive waveguide includes a first material having first refractive index at a selected wavelength and a first target refractive index at a midpoint of the first visible wavelength range. The second diffractive waveguide includes a second material having a second refractive index at the selected wavelength and a second target refractive index at a midpoint of the second visible wavelength range. The third diffractive waveguide includes a third material having a third refractive index at the selected wavelength and a third target refractive index at a midpoint of the third visible wavelength range. A difference between any two of the first target refractive index, the second target refractive index, and the third target refractive index is less than 0.005 at the selected wavelength.
    Type: Application
    Filed: November 20, 2024
    Publication date: March 13, 2025
    Inventors: Sharad D. Bhagat, Brian George Hill, Christophe Peroz, Chieh Chang, Ling Li
  • Patent number: 12235474
    Abstract: A method of operating a dynamic eyepiece in an augmented reality headset includes producing first virtual content associated with a first depth plane, coupling the first virtual content into the dynamic eyepiece, and projecting the first virtual content through one or more waveguide layers of the dynamic eyepiece to an eye of a viewer. The one or more waveguide layers are characterized by a first surface profile. The method also includes modifying the one or more waveguide layers to be characterized by a second surface profile different from the first surface profile, producing second virtual content associated with a second depth plane, coupling the second virtual content into the dynamic eyepiece, and projecting the second virtual content through the one or more waveguide layers of the dynamic eyepiece to the eye of the viewer.
    Type: Grant
    Filed: April 11, 2023
    Date of Patent: February 25, 2025
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Victor Kai Liu, Samarth Bhargava, Ling Li, Sharad D. Bhagat, Christophe Peroz, Jason Donald Mareno
  • Patent number: 12216242
    Abstract: In some embodiments, a head-mounted augmented reality display system comprises one or more hybrid waveguides configured to display images by directing modulated light containing image information into the eyes of a viewer. Each hybrid waveguide is formed of two or more layers of different materials. The thicker of the layers is a highly optically transparent “core” layer, and the thinner layer comprises a pattern of protrusions and indentations to form, e.g., a diffractive optical element. The pattern may be formed by imprinting. The hybrid waveguide may include additional layers, e.g., forming a plurality of alternating core layers and thinner patterned layers. Multiple waveguides may be stacked to form an integrated eyepiece, with each waveguide configured to receive and output light of a different component color.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: February 4, 2025
    Assignee: Magic Leap, Inc.
    Inventors: Christophe Peroz, Chieh Chang, Sharad D. Bhagat
  • Patent number: 12194696
    Abstract: Fabricating a high refractive index photonic device includes disposing a polymerizable composition on a first surface of a first substrate and contacting the polymerizable composition with a first surface of a second substrate, thereby spreading the polymerizable composition on the first surface of the first substrate. The polymerizable composition is cured to yield a polymeric structure having a first surface in contact with the first surface of the first substrate, a second surface opposite the first surface of the polymeric structure and in contact with the first surface of the second substrate, and a selected residual layer thickness between the first surface of the polymeric structure and the second surface of the polymeric structure in the range of 10 ?m to 1 cm. The polymeric structure is separated from the first substrate and the second substrate to yield a monolithic photonic device having a refractive index of at least 1.6.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: January 14, 2025
    Assignee: Molecular Imprints, Inc.
    Inventors: Sharad D. Bhagat, Christophe Peroz, Vikramjit Singh, Frank Y. Xu
  • Patent number: 12189165
    Abstract: A diffractive waveguide stack includes first, second, and third diffractive waveguides for guiding light in first, second, and third visible wavelength ranges, respectively. The first diffractive waveguide includes a first material having first refractive index at a selected wavelength and a first target refractive index at a midpoint of the first visible wavelength range. The second diffractive waveguide includes a second material having a second refractive index at the selected wavelength and a second target refractive index at a midpoint of the second visible wavelength range. The third diffractive waveguide includes a third material having a third refractive index at the selected wavelength and a third target refractive index at a midpoint of the third visible wavelength range. A difference between any two of the first target refractive index, the second target refractive index, and the third target refractive index is less than 0.005 at the selected wavelength.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: January 7, 2025
    Assignee: Magic Leap, Inc.
    Inventors: Sharad D. Bhagat, Brian George Hill, Christophe Peroz, Chieh Chang, Ling Li
  • Publication number: 20240391191
    Abstract: In an example method of forming a waveguide part having a predetermined shape, a photocurable material is dispensed into a space between a first mold portion and a second mold portion opposite the first mold portion. A relative separation between a surface of the first mold portion with respect to a surface of the second mold portion opposing the surface of the first mold portion is adjusted to fill the space between the first and second mold portions. The photocurable material in the space is irradiated with radiation suitable for photocuring the photocurable material to form a cured waveguide film so that different portions of the cured waveguide film have different rigidity. The cured waveguide film is separated from the first and second mold portions. The waveguide part is singulated from the cured waveguide film. The waveguide part corresponds to portions of the cured waveguide film having a higher rigidity than other portions of the cured waveguide film.
    Type: Application
    Filed: July 31, 2024
    Publication date: November 28, 2024
    Inventors: Sharad D. Bhagat, Chieh Chang, Christophe Peroz
  • Publication number: 20240377644
    Abstract: A method, includes providing a wafer including a first surface grating extending over a first area of a surface of the wafer and a second surface grating extending over a second area of the surface of the wafer; de-functionalizing a portion of the surface grating in at least one of the first surface grating area and the second surface grating area; and singulating an eyepiece from the wafer, the eyepiece including a portion of the first surface grating area and a portion of the second surface grating area. The first surface grating in the eyepiece corresponds to an input coupling grating for a head-mounted display and the second surface grating corresponds to a pupil expander grating for the head-mounted display.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Chieh Chang, Christophe Peroz, Ryan Jason Ong, Ling Li, Sharad D. Bhagat, Samarth Bhargava
  • Publication number: 20240329282
    Abstract: A system includes a first chuck operable to support a stencil including a plurality of apertures, a wafer chuck operable to support and move a wafer including a plurality of incoupling gratings, a first light source operable to direct light to impinge on a first surface of the stencil, and one or more second light sources operable to direct light to impinge on the wafer. The system also includes one or more lens and camera assemblies operable to receive light from the first light source passing through the plurality of apertures in the stencil and receive light from the one or more second light sources diffracted from the plurality of incoupling gratings in the wafer. The system also includes an alignment system operable to move the wafer with respect to the stencil to reduce an offset between aperture locations and incoupling grating locations.
    Type: Application
    Filed: June 11, 2024
    Publication date: October 3, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Ling Li, Chieh Chang, Sharad D. Bhagat, Christophe Peroz, Brian George Hill, Roy Matthew Patterson, Satish Sadam
  • Publication number: 20240308162
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Application
    Filed: May 22, 2024
    Publication date: September 19, 2024
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20240302652
    Abstract: Color-selective waveguides, methods for fabricating color-selective waveguides, and augmented reality (AR)/mixed reality (MR) applications including color-selective waveguides are described. The color-selective waveguides can advantageously reduce or block stray light entering a waveguide (e.g., red, green, or blue waveguide), thereby reducing or eliminating back-reflection or back-scattering into the eyepiece.
    Type: Application
    Filed: May 3, 2024
    Publication date: September 12, 2024
    Inventors: Sharad D. Bhagat, David Carl Jurbergs, Ryan Jason Ong, Christophe Peroz, Chieh Chang, Ling Li
  • Patent number: 12072502
    Abstract: A method, includes providing a wafer including a first surface grating extending over a first area of a surface of the wafer and a second surface grating extending over a second area of the surface of the wafer; de-functionalizing a portion of the surface grating in at least one of the first surface grating area and the second surface grating area; and singulating an eyepiece from the wafer, the eyepiece including a portion of the first surface grating area and a portion of the second surface grating area. The first surface grating in the eyepiece corresponds to an input coupling grating for a head-mounted display and the second surface grating corresponds to a pupil expander grating for the head-mounted display.
    Type: Grant
    Filed: August 28, 2023
    Date of Patent: August 27, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Ryan Jason Ong, Ling Li, Sharad D. Bhagat, Samarth Bhargava
  • Patent number: 12038591
    Abstract: A method of aligning a stencil to an eyepiece wafer includes providing the stencil, positioning the stencil with respect to a first light source, and determining locations of at least two stencil apertures. The method also includes providing the eyepiece wafer. The eyepiece wafer includes at least two eyepiece waveguides, each eyepiece waveguide including an incoupling grating and a corresponding diffraction pattern. The method further includes directing light from one or more second light sources to impinge on each of the corresponding diffraction patterns, imaging light diffracted from each incoupling grating, determining at least two incoupling grating locations, determining offsets between corresponding stencil aperture locations and incoupling grating locations, and aligning the stencil to the eyepiece wafer based on the determined offsets.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: July 16, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Ling Li, Chieh Chang, Sharad D. Bhagat, Christophe Peroz, Brian George Hill, Roy Matthew Patterson, Satish Sadam
  • Patent number: 12030269
    Abstract: An example system for molding a photocurable material into a planar object includes a first mold structure having a first mold surface, a second mold structure having a second mold surface, and one or more protrusions disposed along at least one of the first mold surface or the second mold surface. During operation, the system is configured to position the first and second mold structures such that the first and second mold surfaces face each other with the one or more protrusions contacting the opposite mold surface, and a volume having a total thickness variation (TTV) of 500 nm or less is defined between the first and second mold surfaces. The system is further configured to receive the photocurable material in the volume, and direct radiation at the one or more wavelengths into the volume.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: July 9, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Chieh Chang, Christophe Peroz, Sharad D. Bhagat, Roy Matthew Patterson, Michael Anthony Klug, Charles Scott Carden
  • Publication number: 20240192481
    Abstract: Eyepieces and methods of fabricating the eyepieces are disclosed. In some embodiments, the eyepiece comprises a curved cover layer and a waveguide layer for propagating light. In some embodiments, the curved cover layer comprises an antireflective feature.
    Type: Application
    Filed: April 15, 2022
    Publication date: June 13, 2024
    Inventors: Ryan Jason ONG, Ling LI, Chieh CHANG, Sharad D. BHAGAT, Christophe PEROZ, Victor Kai LIU, Samarth BHARAGAVA, Mauro MELLI, Melanie Maputol WEST
  • Publication number: 20240173930
    Abstract: Methods are disclosed for fabricating molds for forming eyepieces having waveguides with integrated spacers. The molds are formed by etching deep holes (e.g., 5 ?m to 1000 ?m deep) into a substrate using a wet etch or dry etch. The etch masks for defining the holes may be formed with a thick metal layer and/or multiple layers of different metals. A resist layer may be disposed over the etch mask. The resist layer may be patterned to form a pattern of holes, the pattern may be transferred to the etch mask, and the etch mask may be used to transfer the pattern into the underlying substrate. The patterned substrate may be utilized as a mold onto which a flowable polymer may be introduced and allowed to harden. Hardened polymer in the holes may form integrated spacers. The hardened polymer may be removed from the mold to form a waveguide with integrated spacers.
    Type: Application
    Filed: November 10, 2023
    Publication date: May 30, 2024
    Inventors: Mauro MELLI, Chieh Chang, Ling Li, Melanie Maputol WEST, Christophe Peroz, Ali KARBASI, Sharad D. Bhagat, Brian George HILL
  • Patent number: 11994670
    Abstract: Color-selective waveguides, methods for fabricating color-selective waveguides, and augmented reality (AR)/mixed reality (MR) applications including color-selective waveguides are described. The color-selective waveguides can advantageously reduce or block stray light entering a waveguide (e.g., red, green, or blue waveguide), thereby reducing or eliminating back-reflection or back-scattering into the eyepiece.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: May 28, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Sharad D. Bhagat, David Carl Jurbergs, Ryan Jason Ong, Christophe Peroz, Chieh Chang, Ling Li
  • Publication number: 20240159956
    Abstract: In some embodiments, a head-mounted, near-eye display system comprises a stack of waveguides having integral spacers separating the waveguides. The waveguides may each include diffractive optical elements that are formed simultaneously with the spacers by imprinting. The spacers are disposed on one major surface of each of the waveguides and indentations are provided on an opposite major surface of each of the waveguides. The indentations are sized and positioned to align with the spacers, thereby forming a self-aligned stack of waveguides. Tops of the spacers may be provided with light scattering features, anti-reflective coatings, and/or light absorbing adhesive to prevent light leakage between the waveguides. As seen in a top-down view, the spacers may be elongated along the same axis as the diffractive optical elements. The waveguides may include structures (e.g.
    Type: Application
    Filed: December 22, 2023
    Publication date: May 16, 2024
    Inventors: Christophe Peroz, Chieh Chang, Sharad D. Bhagat, Victor Kai Liu, Roy Matthew Patterson, David Carl Jurbergs, Mohammadreza Khorasaninejad, Ling Li, Michael Nevin Miller, Charles Scott Carden
  • Publication number: 20240045209
    Abstract: A method, includes providing a wafer including a first surface grating extending over a first area of a surface of the wafer and a second surface grating extending over a second area of the surface of the wafer; de-functionalizing a portion of the surface grating in at least one of the first surface grating area and the second surface grating area; and singulating an eyepiece from the wafer, the eyepiece including a portion of the first surface grating area and a portion of the second surface grating area. The first surface grating in the eyepiece corresponds to an input coupling grating for a head-mounted display and the second surface grating corresponds to a pupil expander grating for the head-mounted display.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 8, 2024
    Inventors: Chieh Chang, Christophe Peroz, Ryan Jason Ong, Ling Li, Sharad D. Bhagat, Samarth Bhargava