Patents by Inventor Sharath Chandra Mahavadi
Sharath Chandra Mahavadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12092626Abstract: A workflow and fluid analysis system to determine polar concentration and type of a reservoir fluid sample that is collected and analyzed in a downhole environment. Once collected this data can be fed into an advisory tool which can predict the probability of different types of issues that might be encountered in production of reservoir fluids from the reservoir. The workflow and fluid analysis system can also be employed in a surface-located laboratory tool for analysis of reservoir fluids.Type: GrantFiled: February 11, 2021Date of Patent: September 17, 2024Assignee: Schlumberger Technology CorporationInventors: Sharath Chandra Mahavadi, Yi-Qiao Song
-
Publication number: 20240229606Abstract: Shale inhibitor additives, wellbore fluids comprising said additives, and methods using said fluids control hydration in wellbores disposed within swellable subterranean formations. The wellbore fluids contain aqueous base fluids. the shale inhibition additives. and natural biopolymeric viscosifiers. and optional encapsulating polymer agents. wherein the shale inhibition additives include amine-based shale inhibition agents. The methods circulate the wellbore fluids into the wellbores and/or maintain triamine-based shale inhibition agents of the wellbore fluids at concentrations of at least 50% by weight. based on total weights of the shale inhibition additives during multiple circulations of the wellbore fluids in the wellbores.Type: ApplicationFiled: September 29, 2022Publication date: July 11, 2024Inventors: Dimitri M. Khramov, Balakrishnan Panamarathupalayam, Sharath Chandra Mahavadi, Lucas Mejia
-
Publication number: 20240232366Abstract: A liquid additive mixing apparatus is provided that has a plurality of chambers containing additives, as well as a system for mixing the additives. One or more additives are mixed with water to form a mixing fluid. The mixing fluid is placed in a first tank that is fluidly connected to a cement mixing unit. A cementing operation is executed during which the mixing fluid from the first tank is mixed with a cement to form a slurry. A capillary electrophoresis (CE) instrument is employed to monitor at least one additive parameter and detect deviations from a predetermined tolerance for the at least one additive parameter.Type: ApplicationFiled: March 25, 2024Publication date: July 11, 2024Inventors: Simon Ivar ANDERSEN, Sharath Chandra Mahavadi, Salim TAOUTAOU, Alexander NEBESNYY, Jonathan Wun Shiung Chong
-
Publication number: 20240190723Abstract: Methods of treating an aqueous source are described herein that include reducing a concentration of sulfide species in a stream obtained from the aqueous source to form an extraction feed and extracting ions from the extraction feed, or a stream obtained from the extraction feed, using direct aqueous extraction. Other methods describe treating an aqueous source by reducing a concentration of organic species in a stream derived from the aqueous source to form an extraction feed and extracting ions from the extraction feed, or a stream derived from the extraction feed, using direct aqueous extraction. The aqueous source can be an aqueous lithium source.Type: ApplicationFiled: November 3, 2023Publication date: June 13, 2024Inventors: Florence Binet, Arindam Bhattacharya, Gary W. Sams, Dominic Vincent Perroni, Sharath Chandra Mahavadi
-
Patent number: 11941128Abstract: A liquid additive mixing apparatus is provided that has a plurality of chambers containing additives, as well as a system for mixing the additives. One or more additives are mixed with water to form a mixing fluid. The mixing fluid is placed in a first tank that is fluidly connected to a cement mixing unit. A cementing operation is executed during which the mixing fluid from the first tank is mixed with a cement to form a slurry. A capillary electrophoresis (CE) instrument is employed to monitor at least one additive parameter and detect deviations from a predetermined tolerance for the at least one additive parameter.Type: GrantFiled: March 28, 2018Date of Patent: March 26, 2024Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Simon Ivar Andersen, Sharath Chandra Mahavadi, Salim Taoutaou, Alexander Nebesnyy, Jonathan Wun Shiung Chong
-
Publication number: 20240025767Abstract: Methods of treating an aqueous source are described herein that include reducing a concentration of sulfide species in a stream obtained from the aqueous source to form an extraction feed and extracting ions from the extraction feed, or a stream obtained from the extraction feed, using direct aqueous extraction. Other methods describe treating an aqueous source by reducing a concentration of organic species in a stream derived from the aqueous source to form an extraction feed and extracting ions from the extraction feed, or a stream derived from the extraction feed, using direct aqueous extraction. The aqueous source can be an aqueous lithium source.Type: ApplicationFiled: June 2, 2023Publication date: January 25, 2024Inventors: Florence Binet, Arindam Bhattacharya, Gary W. Sams, Dominic Vincent Perroni, Sharath Chandra Mahavadi
-
Patent number: 11761873Abstract: Methods may include emplacing a downhole tool within a wellbore, sampling a fluid downhole with the downhole tool; analyzing the fluid, and calculating an interfacial tension (IFT), wherein calculating the acid-base IFT contribution comprises measuring a concentration of a surface-active species directly. Apparatuses for measuring an interfacial tension (IFT) in a fluid downhole may be part of a downhole tool and may include a sampling head to sample the fluid; and a downhole fluid analysis module that includes a spectrometer capable of measuring a concentration of a surface-active species in the fluid, and a processor configured to determine the IFT of the fluid downhole based on the measured concentration of the surface-active species.Type: GrantFiled: December 14, 2017Date of Patent: September 19, 2023Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Simon Ivar Andersen, Wael Abdallah, Dominic Joseph Brady, Mohammed Badri, Sharath Chandra Mahavadi, Bastian Sauerer, Mohamed Ahmed Abdel Reheem Hamdy
-
Publication number: 20230287789Abstract: A method of operating a drilling fluid analysis system includes obtaining multiple samples of a drilling fluid at different times over a time period. The method also includes placing the multiple samples into a capillary electrophoresis device. The method further includes determining a respective concentration of a component in each of the multiple samples of the drilling fluid with the capillary electrophoresis device.Type: ApplicationFiled: March 14, 2022Publication date: September 14, 2023Inventors: Sharath Chandra Mahavadi, Ling Feng, Balakrishnan Panamarathupalayam, Dimitri Khramov, Lucas Mejia
-
Patent number: 11754546Abstract: Systems and methods for monitoring a crude oil blending process use nuclear magnetic resonance (NMR) sensors which investigate properties of a plurality of crude oil streams that are mixed together to form a crude oil blend. An NMR sensor is also used to investigate the properties of the crude oil blend. The investigated properties may include viscosity. Resulting determinations may be used to control the input streams so that the output stream meets desired criteria. Additional sensors such as spectroscopy sensors, viscometers, and densitometers may be used in conjunction with the NMR sensors.Type: GrantFiled: December 10, 2018Date of Patent: September 12, 2023Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Sharath Chandra Mahavadi, Ravinath Kausik Kadayam Viswanathan, Kamilla Fellah, Simon Ivar Andersen, Yiqiao Tang, Yi-Qiao Song, Shawn David Taylor, Gary Potten
-
Publication number: 20230112340Abstract: A workflow and fluid analysis system to determine polar concentration and type of a reservoir fluid sample that is collected and analyzed in a downhole environment. Once collected this data can be fed into an advisory tool which can predict the probability of different types of issues that might be encountered in production of reservoir fluids from the reservoir. The workflow and fluid analysis system can also be employed in a surface-located laboratory tool for analysis of reservoir fluids.Type: ApplicationFiled: February 11, 2021Publication date: April 13, 2023Inventors: Sharath Chandra Mahavadi, Yi-Qiao Song
-
Patent number: 11550975Abstract: Methods and systems are provided for characterizing interfacial tension (IFT) of reservoir fluids, which involves obtaining fluid property data that represents fluid properties of a reservoir fluid sample measured downhole at reservoir conditions, and inputting the fluid property data to a computational model that determines a value of oil-water IFT of the reservoir fluid sample based on the fluid property data. In embodiments, the fluid property data represents single-phase fluid properties of the reservoir fluid sample, such as fluid density and viscosity of an oil phase of the reservoir fluid sample and fluid density of a water phase of the reservoir fluid sample. In embodiments, the computation model can be based on machine learning or analytics combined with a thermodynamics-based physics model.Type: GrantFiled: July 28, 2020Date of Patent: January 10, 2023Assignees: SCHLUMBERGER TECHNOLOGY CORPORATION, SAUDI ARABIAN OIL COMPANYInventors: Sharath Chandra Mahavadi, Robin Singh, Wael Abdallah, Mohammed Al-Hamad, Bastian Sauerer, Shouxiang Ma, Leilei Zhang
-
Patent number: 11415567Abstract: Nuclear magnetic resonance (NMR) relaxation and/or diffusion measurements are used to deduce fluid compositional information such as a chain-length distribution, which may then be used to predict the true boiling points (TBP) of a sample of a complex hydrocarbon fluid mixture, such as a crude oil. The NMR measurements may be considered a fast and portable proxy measurement in estimating fluid TBP distributions in lieu of distillation methods, or the simulated distillation by gas chromatography.Type: GrantFiled: March 5, 2019Date of Patent: August 16, 2022Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Yiqiao Tang, Yi-Qiao Song, Sharath Chandra Mahavadi, Ravinath Kausik Kadayam Viswanathan, Shawn David Taylor, Gary Potten
-
Publication number: 20220035971Abstract: Methods and systems are provided for characterizing interfacial tension (IFT) of reservoir fluids, which involves obtaining fluid property data that represents fluid properties of a reservoir fluid sample measured downhole at reservoir conditions, and inputting the fluid property data to a computational model that determines a value of oil-water IFT of the reservoir fluid sample based on the fluid property data. In embodiments, the fluid property data represents single-phase fluid properties of the reservoir fluid sample, such as fluid density and viscosity of an oil phase of the reservoir fluid sample and fluid density of a water phase of the reservoir fluid sample. In embodiments, the computation model can be based on machine learning or analytics combined with a thermodynamics-based physics model.Type: ApplicationFiled: July 28, 2020Publication date: February 3, 2022Inventors: Sharath Chandra Mahavadi, Robin Singh, Wael Abdallah, Mohammed Al-Hamad, Bastian Sauerer, Shouxiang Ma, Leilei Zhang
-
Patent number: 11169114Abstract: The current application discloses methods and systems to analyze on-site and in real-time or quasi real-time the composition of the well fluid before or during use or disposition. The method is based on capillary electrophoresis (CE) and does not require the addition of tracers into the well fluid or additive. Based on the significance of each additive on the well fluid properties, it can be decided to determine the concentration of all additives or only one or a limited number of the additives present in the fluid, and the concentrations can be adjusted as needed to reach the desired target concentration(s).Type: GrantFiled: January 20, 2015Date of Patent: November 9, 2021Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Sharath Chandra Mahavadi, Simon Ivar Andersen, Olivier Porcherie, Isabelle Couillet
-
Publication number: 20210086400Abstract: A liquid additive mixing apparatus is provided that has a plurality of chambers containing additives, as well as a system for mixing the additives. One or more additives are mixed with water to form a mixing fluid. The mixing fluid is placed in a first tank that is fluidly connected to a cement mixing unit. A cementing operation is executed during which the mixing fluid from the first tank is mixed with a cement to form a slurry. A capillary electrophoresis (CE) instrument is employed to monitor at least one additive parameter and detect deviations from a predetermined tolerance for the at least one additive parameter.Type: ApplicationFiled: March 28, 2018Publication date: March 25, 2021Inventors: Simon Ivar ANDERSEN, Sharath Chandra MAHAVADI, Salim TAOUTAOU, Alexander NEBESNYY, Jonathan Wun Shiung CHONG
-
Publication number: 20210041414Abstract: Nuclear magnetic resonance (NMR) relaxation and/or diffusion measurements are used to deduce fluid compositional information such as a chain-length distribution, which may then be used to predict the true boiling points (TBP) of a sample of a complex hydrocarbon fluid mixture, such as a crude oil. The NMR measurements may be considered a fast and portable proxy measurement in estimating fluid TBP distributions in lieu of distillation methods, or the simulated distillation by gas chromatography.Type: ApplicationFiled: March 5, 2019Publication date: February 11, 2021Inventors: Yiqiao TANG, Yi-Qiao SONG, Sharath Chandra MAHAVADI, Ravinath Kausik KADAYAM VISWANATHAN, Shawn David TAYLOR, Gary POTTEN
-
Patent number: 10907090Abstract: Methods include introducing a multistage treatment fluid into one or more intervals of a wellbore, wherein the treatment fluid contains one or more stages of a polymer-forming composition and one or more stages of a spacer fluid and initiating polymerization of the one or more stages of polymer-forming composition. Methods may include designing a multistage treatment fluid containing one or more stages of a polymer-forming composition and one or more stages of a spacer fluid, wherein or more stages of the polymer-forming composition comprises a thermosetting polymer; and pumping the multistage treatment fluid into a wellbore, wherein the pumping rate is determined by constructing a model based upon (a) the minimum pumping rate determined from the critical reaction temperature and the downhole temperature, (b) the fracture closing time, (c) the temperature within one or more fractures, and (d) the maximum pumping rate.Type: GrantFiled: July 26, 2016Date of Patent: February 2, 2021Assignee: Schlumberger Technology CorporationInventors: Francois Auzerais, Meng Qu, Shitong S. Zhu, Agathe Robisson, Yucun Lou, Syed Afaq Ali, Bruce Alexander Mackay, Sandeep Verma, Sharath Chandra Mahavadi
-
Patent number: 10876042Abstract: Methods of treating a subterranean formation penetrated by a wellbore may include injecting a multistage fracturing treatment into the wellbore comprising one or more stages of geopolymer precursor composition containing a geopolymer precursor and an activator, and one or more stages of a spacer fluid; and curing the one or more stages of geopolymer precursor composition. In another aspect, methods of treating a subterranean formation penetrated by a wellbore may include injecting a multistage fracturing treatment into the wellbore that include one or more stages of geopolymer precursor composition, wherein the geopolymer precursor composition includes an emulsion having an oleaginous external phase, and an internal phase comprising one or more surfactants, a geopolymer precursor, and an activator, and one or more stages of a spacer fluid; and curing the one or more stages of geopolymer precursor composition.Type: GrantFiled: June 15, 2017Date of Patent: December 29, 2020Assignee: Schlumberger Technology CorporationInventors: Meng Qu, Francois M. Auzerais, Sandeep Verma, Agathe Robisson, Sharath Chandra Mahavadi, Yucun Lou, Shitong S. Zhu
-
Publication number: 20200340971Abstract: Systems and methods for monitoring a crude oil blending process use nuclear magnetic resonance (NMR) sensors which investigate properties of a plurality of crude oil streams that are mixed together to form a crude oil blend. An NMR sensor is also used to investigate the properties of the crude oil blend. The investigated properties may include viscosity. Resulting determinations may be used to control the input streams so that the output stream meets desired criteria. Additional sensors such as spectroscopy sensors, viscometers, and densitometers may be used in conjunction with the NMR sensors.Type: ApplicationFiled: December 10, 2018Publication date: October 29, 2020Inventors: Sharath Chandra Mahavadi, Ravinath Kausik Kadayam Viswanathan, Kamilla Fellah, Simon Ivar Andersen, Yiqiao Tang, Yi-Qiao Song, Shawn David Taylor, Gary Potten
-
Publication number: 20200096429Abstract: Methods may include emplacing a downhole tool within a wellbore, sampling a fluid downhole with the downhole tool; analyzing the fluid, and calculating an interfacial tension (IFT), wherein calculating the acid-base IFT contribution comprises measuring a concentration of a surface-active species directly. Apparatuses for measuring an interfacial tension (IFT) in a fluid downhole may be part of a downhole tool and may include a sampling head to sample the fluid; and a downhole fluid analysis module that includes a spectrometer capable of measuring a concentration of a surface-active species in the fluid, and a processor configured to determine the IFT of the fluid downhole based on the measured concentration of the surface-active species.Type: ApplicationFiled: December 14, 2017Publication date: March 26, 2020Inventors: Simon Ivar Andersen, Wael Abdallah, Dominic Joseph Brady, Mohammed Badri, Sharath Chandra Mahavadi, Bastian Sauerer, Mohamed Ahmed Abdel Reheem Hamdy