Patents by Inventor Sharon Gadonniex

Sharon Gadonniex has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210201928
    Abstract: Systems and methods are disclosed for processing audio for an electronic device, the electronic device including an integrated speech enhanced voice trigger module that can provide an improvement over existing voice trigger modules by effectively combining together voice trigger techniques and speech enhancement techniques. In various embodiments, the integrated speech enhanced voice trigger module is configured to reduce mismatches in types and levels of noise that are encountered during both voice trigger training and runtime. This can result in a higher true positive rate (TPR), a lower false alarm (FA), and a lower impostor acceptance rate (IAR). The disclosed integrated speech enhanced voice trigger module can be used be used with an electronic device having a single microphone or a plurality of microphones.
    Type: Application
    Filed: December 20, 2020
    Publication date: July 1, 2021
    Inventors: Harsha Rao, Anil Jakkam, Pratik Shah, Stephen Cradock, Sharon Gadonniex, Tianfang Liu
  • Publication number: 20210110838
    Abstract: A method for optimal configuration of a voice user interface is disclosed herein. The method includes receiving an audio signal; processing the audio signal by a context awareness module to generate context information regarding an acoustic environment of the audio signal; determining, based on the context information, an optimal one of a plurality of different configurations of a voice user interface to perform voice user interface processing of the audio signal; and performing the voice user interface processing of the audio signal using the optimal configuration of the plurality of different configurations.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Inventors: Sridhar Nemala, Dhruv Bharadwaj, Navjot Singh, Sharon Gadonniex
  • Publication number: 20210005181
    Abstract: The disclosure describes keyword detection in an audio processor and methods therefor including a low-power keyword detection engine (LKDE) and a high-power keyword detection engine (HKDE). In one implementation, the LKDE detects a keyword in data from a single audio source while buffering data from multiple audio sources and, upon detection of a keyword, the HKDE is awakened to verify the previously detected keyword by processing the buffered audio data from the multiple sources.
    Type: Application
    Filed: June 4, 2020
    Publication date: January 7, 2021
    Inventors: Adam Abed, Sib Sankar Dey, Sharon Gadonniex, Matthew Cowan, Karthigeyan Vaidyanathan, Douglas Vargha
  • Publication number: 20190090052
    Abstract: An audio system includes an array of microphones and an audio processing system. The array of microphones includes a plurality of microphones configured to record a plurality of sound signals based on sound waves emanating from a sound source. The audio processing system includes a direction of arrival (DOA) estimator configured to generate an estimation of a DOA of the sound waves emanating from the sound source based on the plurality of sound signals, a statistical subset selector configured to select a subset of the plurality of microphones based on the estimation of the DOA, and a spatial filter configured to modify and combine a set of sound signals associated with the selected subset of the plurality of microphones to produce an audio output associated with the sound source.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 21, 2019
    Applicant: Knowles Electronics, LLC
    Inventors: Nasim Radmanesh, Sharon Gadonniex
  • Patent number: 9830930
    Abstract: Systems and methods for providing ambient awareness are provided. An example method includes receiving an acoustic signal representing at least one captured ambient sound and determining that at least one triggering event has occurred based at least on the acoustic signal, a user profile, and a user context. In response to the determination, the method proceeds to modify, based on the at least one triggering event, the acoustic signal which represents the at least one captured ambient sound. The modified acoustic signal is provided to at least one ear canal of a user. In an exemplary embodiment, ambient sounds are selectively passed through automatically to a user based on certain triggering events, allowing a user to be able to hear sounds outside of headset while the user is wearing the headset. The triggering events may be selected by the user, for example, using a smartphone application.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 28, 2017
    Assignee: Knowles Electronics, LLC
    Inventors: Thomas E. Miller, Sharon Gadonniex
  • Patent number: 9779716
    Abstract: Systems and methods for active noise reduction and occlusion reduction based on seal quality of an in-the-ear (ITE) module inserted into a user's ear canal are provided. An example method includes receiving one or more acoustic signals. Each of the acoustic signals represents at least one captured sound having at least one of a voice component and an unwanted noise. The voice component may include the user's own voice. A quality of a seal of an ear canal is determined based at least partially on the acoustic signals. If the quality of the seal exceeds a predetermined threshold value, an occlusion reduction is performed on the acoustic signals to improve the voice component. If the quality of the seal is below a predetermined threshold value, active noise reduction is performed on the acoustic signals to reduce the unwanted noise.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: October 3, 2017
    Assignee: Knowles Electronics, LLC
    Inventors: Sharon Gadonniex, John Woodruff, Tony Verma
  • Publication number: 20170214994
    Abstract: Systems and methods for earbud control based on proximity detection are provided. An example method includes transmitting ultrasonic signals and receiving reflected ultrasonic signals. Based at least partially on the reflected ultrasonic signals, a distance of an earbud to an ear canal may be determined. If the distance is above a first predetermined threshold value, a low-power mode is activated. If the distance is below the first predetermined threshold value, a functionality of the earbud is modified. Modifying the functionality of the earbud may include activating a full power mode and may further include determining a quality of a seal, provided by the earbud, in the ear canal. If the quality of the seal is above a second predetermined threshold value, a positive feedback is provided to a user. If the quality of the seal is below the second predetermined threshold value, a negative feedback is provided to the user.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 27, 2017
    Inventors: Sharon Gadonniex, Sarmad Qutub, William Ryan
  • Publication number: 20170194020
    Abstract: Systems and methods for providing ambient awareness are provided. An example method includes receiving an acoustic signal representing at least one captured ambient sound and determining that at least one triggering event has occurred based at least on the acoustic signal, a user profile, and a user context. In response to the determination, the method proceeds to modify, based on the at least one triggering event, the acoustic signal which represents the at least one captured ambient sound. The modified acoustic signal is provided to at least one ear canal of a user. In an exemplary embodiment, ambient sounds are selectively passed through automatically to a user based on certain triggering events, allowing a user to be able to hear sounds outside of headset while the user is wearing the headset. The triggering events may be selected by the user, for example, using a smartphone application.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Thomas E. Miller, Sharon Gadonniex
  • Publication number: 20170193974
    Abstract: Systems and methods for active noise reduction and occlusion reduction based on seal quality of an in-the-ear (ITE) module inserted into a user's ear canal are provided. An example method includes receiving one or more acoustic signals. Each of the acoustic signals represents at least one captured sound having at least one of a voice component and an unwanted noise. The voice component may include the user's own voice. A quality of a seal of an ear canal is determined based at least partially on the acoustic signals. If the quality of the seal exceeds a predetermined threshold value, an occlusion reduction is performed on the acoustic signals to improve the voice component. If the quality of the seal is below a predetermined threshold value, active noise reduction is performed on the acoustic signals to reduce the unwanted noise.
    Type: Application
    Filed: December 30, 2015
    Publication date: July 6, 2017
    Inventors: Sharon Gadonniex, John Woodruff, Tony Verma
  • Patent number: 5891040
    Abstract: The method of the invention employs pulsed Doppler ultrasound signals to color image blood and tissue movement velocities in a body. The method initially images a movement with a transmitted ultrasound signal that manifests a current signal transmission frequency value and a current pulse repetition frequency (PRF) value. Those values exhibit a determined ratio R to each other. Thereafter, in response to an indication by the user that movement is to be imaged at a new depth, the method alters the current transmission frequency to a new frequency to provide improved signal back-scatter from movement at the new depth. Then, the current PRF is adjusted, automatically, to a new PRF value which, when compared to the new transmission frequency, manifests substantially the same determined ratio R that was present between the current transmission frequency and current PRF. The latter step assures that the mapping of movement velocity values to colors is maintained, notwithstanding use of a new transmission frequency.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: April 6, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Stephen M. Grenon, Sharon A. Gadonniex, Richard A. Snyder
  • Patent number: 5538003
    Abstract: An ultrasound display system enables a user to rapidly identify a region of interest (ROI) in a displayed ultrasound image without having to trace the outline of the ROI. The system includes a display and a processor for causing the display to manifest an ultrasound image. A user entry device enables a user to initiate a "quick ROI" identification procedure which causes the processor to superimpose a closed geometric figure on a displayed ultrasound image. The user entry device further enables adjustment of the closed geometric figure to substantially enclose the ROI. A user selection input device, in response to user actuation, causes the processor to identify the boundary of the ROI that lies within the vicinity of an edge of the closed geometric figure and further enables the processor to carry out calculations with respect to the determined ROI boundary.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: July 23, 1996
    Assignee: Hewlett-Packard Company
    Inventors: Sharon Gadonniex, Christina E. Banta, David M. Prater