Patents by Inventor Shashwat Swami Jaiswal

Shashwat Swami Jaiswal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11938539
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: March 26, 2024
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Publication number: 20240011407
    Abstract: A blade assembly for a gas turbine engine having an engine casing, with the blade assembly being configured to rotate about a rotational axis. The blade assembly having a blade, and at least one fin. The blade extending between a root and a tip, with the tip being spaced radially from the engine casing to define a space therebetween. The at least one fin extending radially with respect to the tip and into the space.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 11, 2024
    Inventors: Valeria Andreoli, Shashwat Swami Jaiswal, Thomas William Vandeputte
  • Patent number: 11759861
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 19, 2023
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Adam Garret Susong, Peter Pontiller-Schymura
  • Publication number: 20220331875
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Publication number: 20220331869
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Adam Garret Susong, Peter Pontiller-Schymura
  • Publication number: 20220332049
    Abstract: A build unit for additively manufacturing three-dimensional objects may include an energy beam system having one or more irradiation devices respectively configured to direct one or more energy beams onto a region of a powder bed, and an inertization system including an irradiation chamber defining an irradiation plenum, one or more supply manifolds, and a return manifold. The one or more supply manifolds may include a downflow manifold configured to provide a downward flow of a process gas through at least a portion of the irradiation plenum defined by the irradiation chamber, and/or a crossflow manifold configured to provide a lateral flow of the process gas through at least a portion of the irradiation plenum defined by the irradiation chamber. The return manifold may evacuate or otherwise remove process gas from the irradiation plenum defined by the irradiation chamber.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Eric Edward Halla, Ramakrishna Venkata Mallina, Kishore Ramakrishnan, Shashwat Swami Jaiswal, Mohammed Mounir Shalaby, Peter Pontiller-Schymura
  • Patent number: 11078797
    Abstract: A turbine bucket according to embodiments includes: a base; a blade coupled to base and extending radially outward from base, blade including: a body having: a pressure side; a suction side opposing pressure side; a leading edge between pressure side and suction side; and a trailing edge between pressure side and suction side on a side opposing leading edge; and a plurality of radially extending cooling passageways within body; and a shroud coupled to blade radially outboard of blade, shroud including: a plurality of radially extending outlet passageways fluidly connected with a first set of the plurality of radially extending cooling passageways within body; and an outlet path extending at least partially circumferentially through shroud and fluidly connected with all of a second, distinct set of the plurality of radially extending cooling passageways within body.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 3, 2021
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal, Gunnar Leif Siden, Zachary James Taylor
  • Patent number: 10704406
    Abstract: A blade for a turbomachine includes an airfoil extending radially between a root and a tip with a tip shroud coupled to the tip of the airfoil. The tip shroud includes a platform having an outer surface extending generally perpendicular to the airfoil. The tip shroud also includes a forward rail extending radially outward from the outer surface of the platform. The forward rail is oriented generally perpendicular to a hot gas path of the turbomachine. A cooling cavity is defined in a central portion of the platform. The tip shroud also includes a cooling channel extending between the cooling cavity and an ejection slot formed in the forward rail. The ejection slot is positioned radially outward of the outer surface of the platform of the tip shroud.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 7, 2020
    Assignee: General Electric Company
    Inventors: Jalindar Appa Walunj, Shashwat Swami Jaiswal, Stephen Paul Wassynger, Xiuzhang James Zhang
  • Patent number: 10633989
    Abstract: A nozzle has an airfoil, and the nozzle is configured for use with a turbomachine. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent nozzles, at which adjacent nozzles extend across the pathway between opposing walls to aerodynamically interact with a fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. A trailing edge of the airfoil deviates from an axial plane by about 0.1 degrees to about 5 degrees. A turbomachine comprising a plurality of nozzles is also provided.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventors: Shashwat Swami Jaiswal, Rohit Chouhan, Lukasz Szajko
  • Publication number: 20200095871
    Abstract: A turbine bucket according to embodiments includes: a base; a blade coupled to base and extending radially outward from base, blade including: a body having: a pressure side; a suction side opposing pressure side; a leading edge between pressure side and suction side; and a trailing edge between pressure side and suction side on a side opposing leading edge; and a plurality of radially extending cooling passageways within body; and a shroud coupled to blade radially outboard of blade, shroud including: a plurality of radially extending outlet passageways fluidly connected with a first set of the plurality of radially extending cooling passageways within body; and an outlet path extending at least partially circumferentially through shroud and fluidly connected with all of a second, distinct set of the plurality of radially extending cooling passageways within body.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 26, 2020
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal, Gunnar Leif Siden, Zachary James Taylor
  • Patent number: 10508554
    Abstract: A turbine bucket according to embodiments includes: a base; a blade coupled to base and extending radially outward from base, blade including: a body having: a pressure side; a suction side opposing pressure side; a leading edge between pressure side and suction side; and a trailing edge between pressure side and suction side on a side opposing leading edge; and a plurality of radially extending cooling passageways within body; and a shroud coupled to blade radially outboard of blade, shroud including: a plurality of radially extending outlet passageways fluidly connected with a first set of the plurality of radially extending cooling passageways within body; and an outlet path extending at least partially circumferentially through shroud and fluidly connected with all of a second, distinct set of the plurality of radially extending cooling passageways within body.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: December 17, 2019
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal, Gunnar Leif Siden, Zachary James Taylor
  • Patent number: 10301945
    Abstract: A turbine rotor blade that includes: an airfoil defined between a pressure face and a suction face; a tip shroud that includes a seal rail projecting from an outboard surface and, formed thereon, a cutter tooth; and a cooling configuration that includes a cooling channel for receiving and directing a coolant through an interior of the rotor blade. The cooling channel may include fluidly connected segments, in which: a supply segment extends radially through the airfoil; a cutter tooth segment is formed within the cutter tooth of the seal rail; and branching segments formed within at least one of the tip shroud and an outboard region of the airfoil. Each of the branching segments may extend between an upstream port, which connects to the cutter tooth segment, and an outlet port, which is formed on a target surface area, so that the branching segment bisects a target interior region.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 28, 2019
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Randall Richard Good, Hiteshkumar Rameshchandra Mistry, Shashwat Swami Jaiswal
  • Patent number: 10247013
    Abstract: A turbine rotor blade that includes an airfoil defined between a concave pressure face and a laterally opposed convex suction face, and a cooling configuration that includes a cooling channel for receiving and directing a coolant through an interior of the rotor blade. The cooling channel may include fluidly connected segments, in which: a supply segment extends radially through the airfoil; an outlet segment discharges the coolant from the rotor blade at a shallow angle relative to a flow direction of a working fluid through the turbine; and an elbow segment connects the supply segment to the outlet segment and is positioned near the outboard tip of the airfoil. The elbow segment may be configured for accommodating a change of direction between the supply segment and the outlet segment.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: April 2, 2019
    Assignee: General Electric Company
    Inventors: Shashwat Swami Jaiswal, Rohit Chouhan
  • Patent number: 10202852
    Abstract: A rotor blade includes an airfoil portion that extends in a radial direction from a root end to a tip end. A plurality of internal airfoil cooling passages is defined in the airfoil portion. The rotor blade also includes a tip shroud. The tip shroud includes a shroud plate coupled to the tip end. A plurality of tip shroud cooling passages is defined within the shroud plate. Each of the tip shroud cooling passages extends within the shroud plate in a direction generally transverse to the radial direction. Each tip shroud passage includes an inlet coupled in flow communication with at least one of the airfoil cooling passages, and an exit opening defined in, and extending therethrough, a radially outer surface of the tip shroud. The exit opening is coupled in flow communication with the inlet.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: February 12, 2019
    Assignee: General Electric Company
    Inventors: Shashwat Swami Jaiswal, Rohit Chouhan
  • Patent number: 10156145
    Abstract: A turbine bucket according to various embodiments includes: a base; a blade coupled to the base and extending radially outward from the base, the blade including: a body having: a pressure side; a suction side opposing the pressure side; a leading edge between the pressure side and the suction side; and a trailing edge between the pressure side and the suction side on a side opposing the leading edge; a plurality of radially extending cooling passageways within the body; and at least one bleed aperture fluidly coupled with at least one of the plurality of radially extending cooling passageways, the at least one bleed aperture extending through the body at the trailing edge; and a shroud coupled to the blade radially outboard of the blade.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: December 18, 2018
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal, Stephen Paul Wassynger
  • Publication number: 20180355727
    Abstract: A blade for a turbomachine includes an airfoil extending radially between a root and a tip with a tip shroud coupled to the tip of the airfoil. The tip shroud includes a platform having an outer surface extending generally perpendicular to the airfoil. The tip shroud also includes a forward rail extending radially outward from the outer surface of the platform. The forward rail is oriented generally perpendicular to a hot gas path of the turbomachine. A cooling cavity is defined in a central portion of the platform. The tip shroud also includes a cooling channel extending between the cooling cavity and an ejection slot formed in the forward rail. The ejection slot is positioned radially outward of the outer surface of the platform of the tip shroud.
    Type: Application
    Filed: June 13, 2017
    Publication date: December 13, 2018
    Inventors: Jalindar Appa Walunj, Shashwat Swami Jaiswal, Stephen Paul Wassynger, Xiuzhang James Zhang
  • Publication number: 20180283190
    Abstract: A nozzle has an airfoil, and the nozzle is configured for use with a turbomachine. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent nozzles, at which adjacent nozzles extend across the pathway between opposing walls to aerodynamically interact with a fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. A trailing edge of the airfoil deviates from an axial plane by about 0.1 degrees to about 5 degrees. A turbomachine comprising a plurality of nozzles is also provided.
    Type: Application
    Filed: December 18, 2015
    Publication date: October 4, 2018
    Inventors: Shashwat Swami JAISWAL, Rohit CHOUHAN, Lukasz SZAJKO
  • Patent number: 10001019
    Abstract: A turbine rotor blade includes a tip portion having a pressure tip wall and a suction tip wall, a tip leading edge and a tip trailing edge. Also included is a squealer cavity at least partially defined by the pressure tip wall and the suction tip wall. Further included is at least one hole defined by the suction tip wall, the at least one hole configured to bleed a cooling flow out of the squealer cavity into a hot gas path to reduce pressure within the squealer cavity. Yet further included is a main body having a suction side wall and a pressure side wall each extending from a root portion of the turbine rotor blade to the tip portion.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: June 19, 2018
    Assignee: General Electric Company
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal
  • Patent number: 9885243
    Abstract: A turbine bucket according to embodiments includes: a base; a blade coupled to the base, extending radially outward from the base, and including: a body having: a pressure side; a suction side opposing the pressure side; a leading edge between the pressure side and the suction side; and a trailing edge between the pressure side and the suction side on a side opposing the leading edge; and a plurality of radially extending cooling passageways within the body; and a shroud coupled to the blade radially outboard of the blade, including: a plurality of radially extending outlet passageways fluidly connected with a first set of the plurality of radially extending cooling passageways within the body; and an outlet path extending at least partially circumferentially through the shroud and fluidly connected with all of a second, distinct set of the plurality of radially extending cooling passageways within the body.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: February 6, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Rohit Chouhan, Shashwat Swami Jaiswal, Zachary James Taylor
  • Publication number: 20170175536
    Abstract: A turbine rotor blade that includes an airfoil defined between a concave pressure face and a laterally opposed convex suction face, and a cooling configuration that includes a cooling channel for receiving and directing a coolant through an interior of the rotor blade. The cooling channel may include fluidly connected segments, in which: a supply segment extends radially through the airfoil; an outlet segment discharges the coolant from the rotor blade at a shallow angle relative to a flow direction of a working fluid through the turbine; and an elbow segment connects the supply segment to the outlet segment and is positioned near the outboard tip of the airfoil. The elbow segment may be configured for accommodating a change of direction between the supply segment and the outlet segment.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Shashwat Swami Jaiswal, Rohit Chouhan