Patents by Inventor Shau-Lin Shue

Shau-Lin Shue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894238
    Abstract: A method includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench, along a first direction, in the first HM layer. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a second HM layer over the material layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench. The method also includes etching the material layer through the third trench.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yung-Sung Yen, Chung-Ju Lee, Chun-Kuang Chen, Chia-Tien Wu, Ta-Ching Yu, Kuei-Shun Chen, Ru-Gun Liu, Shau-Lin Shue, Tsai-Sheng Gau, Yung-Hsu Wu
  • Publication number: 20240021517
    Abstract: In one embodiment, a self-aligned via is presented. In one embodiment, an inhibitor layer is selectively deposited on the lower conductive region. In one embodiment, a dielectric is selectively deposited on the lower conductive region. In one embodiment, the deposited dielectric may be selectively etched. In one embodiment, an inhibitor is selectively deposited on the lower dielectric region. In one embodiment, a dielectric is selectively deposited on the lower dielectric region. In one embodiment, the deposited dielectric over the lower conductive region has a different etch rate than the deposited dielectric over the lower dielectric region which may lead to a via structure that is aligned with the lower conductive region.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Shao-Kuan Lee, Hsin-Yen Huang, Cheng-Chin Lee, Hai-Ching Chen, SHAU-LIN SHUE
  • Publication number: 20240006233
    Abstract: A semiconductor device includes a substrate, an interconnect layer disposed over the substrate, a metal line formed in the interconnect layer, a dielectric layer disposed on the interconnect layer, and a via contact formed in the dielectric layer and electrically connected to the metal line. One of the via contact and the metal line includes a first metal material and a barrier metal layer disposed on the first metal material. The first metal material includes an alloy which is a mixture of two metal elements. The barrier metal layer includes one of the two metal elements.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Kang FU, Hsien-Chang WU, Ming-Han LEE, Shau-Lin SHUE
  • Patent number: 11860550
    Abstract: Photolithography overlay errors are a source of patterning defects, which contribute to low wafer yield. An interconnect formation process that employs a patterning photolithography/etch process with self-aligned interconnects is disclosed herein. The interconnection formation process, among other things, improves a photolithography overlay (OVL) margin since alignment is accomplished on a wider pattern. In addition, the patterning photolithography/etch process supports multi-metal gap fill and low-k dielectric formation with voids.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tai-I Yang, Wei-Chen Chu, Hsiang-Wei Liu, Shau-Lin Shue, Li-Lin Su, Yung-Hsu Wu
  • Patent number: 11854987
    Abstract: Embodiments of the present disclosure provide an integrated circuit die with vertical interconnect features to enable direct connection between vertically stacked integrated circuit dies. The vertical interconnect features may be formed in a sealing ring, which allows higher routing density than interposers or redistribution layer. The direct connection between vertically stacked integrated circuit dies reduces interposer layers, redistribution process, and bumping processes in multi-die integration, thus, reducing cost of manufacturing.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Han Lee, Shin-Yi Yang, Shau-Lin Shue
  • Patent number: 11854944
    Abstract: Embodiments of the present disclosure provide a stacking edge interconnect chiplet. In one embodiment, a semiconductor device is provided. The semiconductor device includes a first integrated circuit die comprising a first device layer having a first side and a second side opposite the first side, a first interconnect structure disposed on the first side of the first device layer, and a second interconnect structure disposed on the second side of the first device layer. The semiconductor device also includes a power line extending through the first device layer and in contact with the first interconnect structure and the second interconnect structure, and a second integrated circuit die disposed over the first integrated circuit die, the second integrated circuit die comprising a third interconnect structure in contact with the second interconnect structure of the first integrated circuit die.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shin-Yi Yang, Ming-Han Lee, Shau-Lin Shue
  • Patent number: 11854820
    Abstract: A method includes forming a first layer on a substrate; forming a first plurality of trenches in the first layer by a patterning process; and forming a second plurality of trenches in the first layer by another patterning process, resulting in combined trench patterns in the first layer. A first trench of the second plurality connects two trenches of the first plurality. The method further includes forming dielectric spacer features on sidewalls of the combined trench patterns. A space between two opposing sidewalls of the first trench is completely filled by the dielectric spacer features and another space between two opposing sidewalls of one of the two trenches is partially filled by the dielectric spacer features.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Gun Liu, Cheng-Hsiung Tsai, Chung-Ju Lee, Chih-Ming Lai, Chia-Ying Lee, Jyu-Horng Shieh, Ken-Hsien Hsieh, Ming-Feng Shieh, Shau-Lin Shue, Shih-Ming Chang, Tien-I Bao, Tsai-Sheng Gau
  • Patent number: 11854963
    Abstract: An interconnect structure includes a dielectric layer, a first conductive feature, a hard mask layer, a conductive layer, and a capping layer. The first conductive feature is disposed in the dielectric layer. The hard mask layer is disposed on the first conductive feature. The conductive layer includes a first portion and a second portion, the first portion of the conductive layer is disposed over at least a first portion of the hard mask layer, and the second portion of the conductive layer is disposed over the dielectric layer. The hard mask layer and the conductive layer are formed by different materials. The capping layer is disposed on the dielectric layer and the conductive layer.
    Type: Grant
    Filed: June 12, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Kuan Lee, Kuang-Wei Yang, Cherng-Shiaw Tsai, Cheng-Chin Lee, Ting-Ya Lo, Chi-Lin Teng, Hsin-Yen Huang, Hsiao-Kang Chang, Shau-Lin Shue
  • Patent number: 11848190
    Abstract: Interconnect structures and method of forming the same are disclosed herein. An exemplary interconnect structure includes a first contact feature in a first dielectric layer, a second dielectric layer over the first dielectric layer, a second contact feature over the first contact feature, a barrier layer between the second dielectric layer and the second contact feature, and a liner between the barrier layer and the second contact feature. An interface between the first contact feature and the second contact feature includes the liner but is free of the barrier layer.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Ping Chen, Yung-Hsu Wu, Chia-Tien Wu, Min Cao, Ming-Han Lee, Shau-Lin Shue, Shin-Yi Yang
  • Publication number: 20230386901
    Abstract: A method for forming an interconnect structure includes forming a first conductive layer over a dielectric layer, forming one or more openings in the first conductive layer to expose portions of dielectric surface of the dielectric layer and conductive surfaces of the first conductive layer, wherein the one or more openings separates the first conductive layer into one or more portions.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 30, 2023
    Inventors: Ting-Ya LO, Cheng-Chin LEE, Shao-Kuan LEE, Chi-Lin TENG, Hsin-Yen HUANG, Hsiaokang CHANG, Shau-Lin SHUE
  • Publication number: 20230387019
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate. A first conductive feature is over the substrate. A second conductive feature is over the substrate and is adjacent to the first conductive feature. The first and second conductive features are separated by a cavity. A dielectric liner extends from the first conductive feature to the second conductive feature along a bottom of the cavity and further extends along opposing sidewalls of the first and second conductive features. A dielectric cap covers and seals the cavity. The dielectric cap has a top surface that is approximately planar with top surfaces of the first and second conductive features. The first conductive feature and the second conductive feature comprise graphene intercalated with one or more metals.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 30, 2023
    Inventors: Shin-Yi Yang, Meng-Pei Lu, Chin-Lung Chung, Ming-Han Lee, Shau-Lin Shue
  • Publication number: 20230387239
    Abstract: A semiconductor device includes a substrate, a plurality of channel layers, two epitaxial structures, a conductive structure, a via, and a graphene barrier. The channel layers and the epitaxial structures are disposed over the substrate. The channel layers are connected between the epitaxial structures. The conductive structure is disposed on the substrate opposite to the epitaxial structures. The via is connected between one of the epitaxial structure and the conductive structure. The graphene barrier surrounds the via.
    Type: Application
    Filed: May 26, 2022
    Publication date: November 30, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shin-Yi YANG, Meng-Pei LU, Han-Tang HUNG, Ching-Fu YEH, Ming-Han LEE, Shau-Lin SHUE
  • Publication number: 20230387018
    Abstract: A method includes forming a trench within a dielectric layer, the trench comprising an interconnect portion and a via portion, the via portion exposing an underlying conductive feature. The method further includes depositing a seed layer within the trench, depositing a carbon layer on the seed layer, performing a carbon dissolution process to cause a graphene layer to form between the seed layer and the underlying conductive feature, and filling a remainder of the trench with a conductive material.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Shin-Yi Yang, Ming-Han Lee, Shau-Lin Shue
  • Publication number: 20230386910
    Abstract: A semiconductor structure includes a contact over a substrate, an interlayer dielectric (ILD) layer including a first region disposed directly above the contact and a second region disposed adjacent to the first region, first conductive features embedded in the first region and separated by a first distance, a dielectric layer embedded in the ILD layer and disposed between the first conductive features in the first region, and second conductive features disposed in the second region and separated by a second distance greater than the first distance. The second region is free of the dielectric layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 30, 2023
    Inventors: Shih-Kang Fu, Ming-Han Lee, Shau-Lin Shue
  • Publication number: 20230378030
    Abstract: Embodiments of the present disclosure provide a stacking edge interconnect chiplet. In one embodiment, a semiconductor device is provided. The semiconductor device includes a first integrated circuit die comprising a first device layer having a first side and a second side opposite the first side, a first interconnect structure disposed on the first side of the first device layer, and a second interconnect structure disposed on the second side of the first device layer. The semiconductor device also includes a power line extending through the first device layer and in contact with the first interconnect structure and the second interconnect structure, and a second integrated circuit die disposed over the first integrated circuit die, the second integrated circuit die comprising a third interconnect structure in contact with the second interconnect structure of the first integrated circuit die.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Shin-Yi YANG, Ming-Han LEE, Shau-Lin SHUE
  • Publication number: 20230377954
    Abstract: Some embodiments relate to a semiconductor structure including a conductive wire disposed within a first dielectric structure. An etch stop layer overlies the first dielectric structure. A dielectric capping layer is disposed between an upper surface of the conductive wire and the etch stop layer. An upper dielectric layer is disposed along sidewalls of the conductive wire and an upper surface of the etch stop layer. The upper dielectric layer contacts an upper surface of the dielectric capping layer and has a top surface vertically above the etch stop layer.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Yen Huang, Chi-Lin Teng, Hai-Ching Chen, Shau-Lin Shue, Shao-Kuan Lee, Cheng-Chin Lee, Ting-Ya Lo
  • Publication number: 20230378148
    Abstract: Embodiments of the present disclosure provide a semiconductor package. In one embodiment, the semiconductor package includes a first integrated circuit die having a first circuit design, and the first integrated circuit die comprises a first device layer and a first interconnect structure. The semiconductor package also includes a second integrated circuit die having a second circuit design different than the first circuit design, and the second integrated circuit die comprises a second device layer and a second interconnect structure having a first side in contact with the first device layer and a second side in direct contact with the first interconnect structure of the first integrated circuit die. The semiconductor package further includes a substrate having a first side bonded to the first interconnect structure, wherein the second integrated circuit die is surrounded by at least a portion of the substrate.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Han-Tang HUNG, Shin-Yi YANG, Ming-Han LEE, Shau-Lin SHUE
  • Publication number: 20230378099
    Abstract: Embodiments of the present disclosure provide an integrated circuit die having edge interconnect features. The edge interconnect features may be conductive lines extending through sealing rings and into scribe line regions. In some embodiments, heterogeneous integrated circuit dies with edge interconnect features are fabricated on the same substrate. Edge interconnect features of the neighboring integrated circuit dies are connected to each other and provide direct connections between the integrated circuit dies without going through an interposer.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Shau-Lin SHUE, Shin-Yi YANG, Ming-Han LEE
  • Publication number: 20230378077
    Abstract: Embodiments of the present disclosure provide an integrated circuit die with vertical interconnect features to enable direct connection between vertically stacked integrated circuit dies. The vertical interconnect features may be formed in a sealing ring, which allows higher routing density than interposers or redistribution layer. The direct connection between vertically stacked integrated circuit dies reduces interposer layers, redistribution process, and bumping processes in multi-die integration, thus, reducing cost of manufacturing.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Ming-Han LEE, Shin-Yi YANG, Shau-Lin SHUE
  • Publication number: 20230369225
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a first conductive feature and a second conductive feature disposed in an interlayer dielectric (ILD) layer. The semiconductor structure includes a first graphene layer disposed over the first conductive feature and a second graphene layer disposed over a portion of the second conductive feature. An etch-stop layer (ESL) is horizontally interposed between the first graphene layer and the second graphene layer. A side surface of the first or the second graphene layer directly contacts a side surface of the ESL. A third conductive feature is electrically coupled to the second conductive feature. The third conductive feature is separated from the first graphene layer by a portion of the ESL, and the third conductive feature also directly contacts a top surface of the ESL.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Shin-Yi Yang, Yu-Chen Chan, Ming-Han Lee, Hai-Ching Chen, Shau-Lin Shue