Patents by Inventor Shawn A. Johnson

Shawn A. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10687740
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 23, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Publication number: 20200150789
    Abstract: A display film includes a transparent energy dissipation layer having a glass transition temperature of 27 degrees Celsius or less and a Tan Delta peak value of 0.5 or greater, and a transparent conductor layer disposed on the transparent energy dissipation layer. The conductive display films including transparent conductors and a flexible substrate that can protect a display window and survive folding tests intact while maintaining the desired electric conductive properties.
    Type: Application
    Filed: July 19, 2018
    Publication date: May 14, 2020
    Inventors: Joseph W. WOODY, V, David Scott THOMPSON, Matthew S. STAY, Michael A. JOHNSON, Daniel J. THEIS, Ann Marie GILMAN, Shawn C. DODDS
  • Publication number: 20200131554
    Abstract: The instant application provides a method for screening batches of soy hydrolysate for a desired amount of a component thereof, such as ornithine or putrescine, and selecting only those batches of soy hydrolysate that have a desired amount of such component. The present disclosure also sets forth methods for culturing cells in media supplemented with selected batches of soy to produce more consistent, high quality lots of a protein of interest. Further, the present disclosure provides a plurality of protein preparations that have each been produced by culturing cells in media supplemented with separate batches of soy hydrolysate containing a desired amount of ornithine or putrescine, whereby each batch of protein produced exhibits improved quality of the protein of interest or amount of quality protein produced.
    Type: Application
    Filed: January 14, 2020
    Publication date: April 30, 2020
    Inventors: John CHEN, Shawn LAWRENCE, Amy JOHNSON, Theodore LONEY, Ravindra PANGULE, Ta-Chun HANG, Scott CARVER, Bernhard SCHILLING
  • Publication number: 20200070709
    Abstract: A utility vehicle includes a plurality of ground-engaging members, a frame, a powertrain assembly, a front suspension assembly, and a rear suspension assembly. A cargo bed may be supported by the frame at the rear of the vehicle. The vehicle also includes an operator seat and at least one passenger seat positioned within an operator area. In one embodiment, the vehicle includes doors to enclose the operator area.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Applicant: Polaris Industries Inc.
    Inventors: Daniel S. Weber, Brian N. Flick, Curtis C. Carruth, Shawn D. Peterson, Daniel L. Burt, Brent A. Erspamer, Clinton A. Johnson, Brian J. Seidel, Michael C. Bohnsack, Andrew J. Miller, Jason R. Fields, Amery D. Kuhl
  • Patent number: 10582331
    Abstract: System and methods for providing dynamic positional audio are disclosed. Methods can comprise determining availability of one or more devices to output audio and determining a location of the one or more available devices. Audio information can be received and at least a portion of the audio information can be configured to generate assigned audio information based on the determined location of the available devices. The assigned audio information can be transmitted to the available devices.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: March 3, 2020
    Assignee: Comcast Cable Communications, LLC
    Inventors: Chris Robinson, Shawn Kercher, Derek Johnson
  • Publication number: 20190380295
    Abstract: The present invention relates to crop breeding. More particularly, the present invention relates to targeted modification of root to enhance abiotic stress tolerance in maize. In one aspect, the invention provides recombinant maize exhibiting increased root cortical aerenchyma (RCA). Methods of making the recombinant maize and various methods of plant selection and breeding are further provided.
    Type: Application
    Filed: August 28, 2019
    Publication date: December 19, 2019
    Inventors: Shawn Michael Kaeppler, Patompong Saengwilai, Jonathan Paul Lynch, Malcolm John Bennett, James Johnson
  • Publication number: 20190350502
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 10440911
    Abstract: The present invention relates to crop breeding. More particularly, the present invention relates to targeted modification of root to enhance abiotic stress tolerance in maize. In one aspect, the invention provides recombinant maize exhibiting increased root cortical aerenchyma (RCA). Methods of making the recombinant maize and various methods of plant selection and breeding are further provided.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 15, 2019
    Assignees: Wisconsin Alumni Research Foundation, The Penn State Research Foundation
    Inventors: Shawn Michael Kaeppler, Patompong Saengwilai, Jonathan Paul Lynch, Malcolm John Bennett, James Johnson
  • Publication number: 20190167169
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Application
    Filed: January 28, 2019
    Publication date: June 6, 2019
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Publication number: 20190143871
    Abstract: A utility vehicle includes a plurality of ground-engaging members, a frame, a powertrain assembly, a front suspension assembly, and a rear suspension assembly. A cargo bed may be supported by the frame at the rear of the vehicle. The vehicle also includes an operator seat and at least one passenger seat positioned within an operator area. In one embodiment, the vehicle includes doors to enclose the operator area.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Applicant: Polaris Industries Inc.
    Inventors: Daniel S. Weber, Brian N. Flick, Curtis C. Carruth, Shawn D. Peterson, Daniel L. Burt, Brent A. Erspamer, Clinton A. Johnson, Brian J. Seidel, Michael C. Bohnsack
  • Patent number: 10183162
    Abstract: A coiled, closed-loop RF current attenuator is configured to be placed about an implantable lead conductor. A coiled conductor extends in a coiled shape defining a longitudinal axis from a first coil end to a second coil end. The first coil end is electrically connected to the second coil end. An insulator is disposed about the coiled conductor. The closed loop attenuator can also include in series a short, a capacitor and/or a resistor. In some embodiments the closed loop attenuator can be resonant at an MRI RF-pulsed frequency. The closed loop attenuator can be integrated as a permanent part of an implantable lead conductor, or alternatively, be a stand-alone device that is placed about a premade implantable lead conductor.
    Type: Grant
    Filed: January 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Robert A. Stevenson
  • Patent number: 10092749
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 9, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Patent number: 9966658
    Abstract: Various embodiments of the present invention include assemblies and methods for utilizing antennas with high gain in small satellites. In one embodiment, a satellite comprising a payload configured for transmitting data is provided. The payload may include various components of the satellite, such as the attitude control system, electrical power system, and/or communication system. The satellite may be configured to communicate with one or more ground stations. The satellite includes a support structure comprising at least one deployable panel, wherein the support structure houses the payload. The satellite also includes at least one antenna coupled to the support structure, wherein the deployable panel is configured to cover the antenna in a non-deployed state and to expose the antenna in a deployed state.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: May 8, 2018
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Norman G. Fitz-Coy, Vivek Shirvante, Shawn Johnson, Kathryn Cason
  • Publication number: 20180008822
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 11, 2018
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Patent number: 9764129
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: September 19, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Patent number: 9757558
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: September 12, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Publication number: 20170143077
    Abstract: The present invention extends to removable shoe securing straps. A strap includes one or more portions of hook material on an end and/or on a side of the strap. The strap also includes one or more portions of loop material on another end and/or on another side of the strap. The strap can be inserted through eyelets on both sides of a shoe. The one or more hook portions can then be placed in contact with (e.g., folded over onto) the one or more loop portions to hold the strap in position. Thus, the strap secures the shoe onto the human foot. When secure, a human wearer is essentially prevented from “walking out” of the shoe. Accordingly, a human wearer can secure shoes to their feet in a more efficient manner.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Joshua West, Shawn Johnson, Ardie Johnson
  • Publication number: 20160263373
    Abstract: An AIMD includes a conductive housing, an electrically conductive ferrule with an insulator hermetically sealing the ferrule opening. A conductive pathway is hermetically sealed and disposed through the insulator. A filter capacitor is disposed on a circuit board within the housing and has a dielectric body supporting at least two active and two ground electrode plates interleaved, wherein the at least two active electrode plates are electrically connected to the conductive pathway on the device side, and the at least two ground electrode plates are electrically coupled to either the ferrule and/or the conductive housing. The dielectric body has a dielectric constant less than 1000 and a capacitance of between 10 and 20,000 picofarads. The filter capacitor is configured for EMI filtering of MRI high RF pulsed power by a low ESR, wherein the ESR of the filter capacitor at an MRI RF pulsed frequency or range of frequencies is less than 2.0 ohms.
    Type: Application
    Filed: May 24, 2016
    Publication date: September 15, 2016
    Inventors: Robert A. Stevenson, Robert Shawn Johnson, Warren S. Dabney, Thomas Marzano, Richard L. Brendel, Christopher Michael Williams, Holly Noelle Moschiano, Keith W. Seitz, John E. Roberts
  • Publication number: 20160193461
    Abstract: A coiled, closed-loop RF current attenuator is configured to be placed about an implantable lead conductor. A coiled conductor extends in a coiled shape defining a longitudinal axis from a first coil end to a second coil end. The first coil end is electrically connected to the second coil end. An insulator is disposed about the coiled conductor. The closed loop attenuator can also include in series a short, a capacitor and/or a resistor. In some embodiments the closed loop attenuator can be resonant at an MRI RF-pulsed frequency. The closed loop attenuator can be integrated as a permanent part of an implantable lead conductor, or alternatively, be a stand-alone device that is placed about a premade implantable lead conductor.
    Type: Application
    Filed: January 1, 2016
    Publication date: July 7, 2016
    Inventors: Robert Shawn Johnson, Robert A. Stevenson
  • Patent number: 9254377
    Abstract: A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 9, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Kishore Kumar Kondabatni, Warren S. Dabney, Robert Shawn Johnson, Robert A. Stevenson, Christine A. Frysz