Patents by Inventor Shawn Divitt

Shawn Divitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885979
    Abstract: High-performance optical-metasurface-based components configured to at frequencies of UV light and, in particular, in deep UV range and performing multiple optical-wavefront-shaping functions (among which there are high-numerical-aperture lensing, accelerating beam generation, and hologram projection). As a representative material for such components, hafnium oxide demands creation and establishment of a novel process of manufacture that is nevertheless based on general principles of Damascene lithography, to be compatible with existing technology and yet sufficient for producing high-aspect-ratio features that currently-used materials and processes simply do not deliver. The described invention opens a way towards low-form-factor, multifunctional ultraviolet nanophotonic platforms based on flat optical components and enabling diverse applications including lithography, imaging, spectroscopy, and quantum information processing.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: January 30, 2024
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Cheng Zhang, Shawn Divitt, Wenqi Zhu, Amit Kumar Agrawal, Henri Lezec
  • Patent number: 11689821
    Abstract: An Incoherent Fourier ptychographic imaging system. Multiple known light patterns are projected sequentially onto a target and images of the combined pattern and target are recorded by a camera, with the images being processed using an optical transfer function (OTF). The camera and projection system are aligned along the same optical axis. The known illumination patterns and the optical transfer function (OTF) are combined in an iterative algorithm to generate an image with resolution greater than would be achieved by uniform illumination of the target and imaging with the camera.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: June 27, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Shawn Divitt, Samuel Park
  • Publication number: 20220046169
    Abstract: An Incoherent Fourier ptychographic imaging system. Multiple known light patterns are projected sequentially onto a target and images of the combined pattern and target are recorded by a camera, with the images being processed using an optical transfer function (OTF). The camera and projection system are aligned along the same optical axis. The known illumination patterns and the optical transfer function (OTF) are combined in an iterative algorithm to generate an image with resolution greater than would be achieved by uniform illumination of the target and imaging with the camera.
    Type: Application
    Filed: July 27, 2021
    Publication date: February 10, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Shawn Divitt, Samuel Park
  • Publication number: 20210208312
    Abstract: High-performance optical-metasurface-based components configured to at frequencies of UV light and, in particular, in deep UV range and performing multiple optical-wavefront-shaping functions (among which there are high-numerical-aperture lensing, accelerating beam generation, and hologram projection). As a representative material for such components, hafnium oxide demands creation and establishment of a novel process of manufacture that is nevertheless based on general principles of Damascene lithography, to be compatible with existing technology and yet sufficient for producing high-aspect-ratio features that currently-used materials and processes simply do not deliver. The described invention opens a way towards low-form-factor, multifunctional ultraviolet nanophotonic platforms based on flat optical components and enabling diverse applications including lithography, imaging, spectroscopy, and quantum information processing.
    Type: Application
    Filed: December 29, 2020
    Publication date: July 8, 2021
    Inventors: Cheng ZHANG, Shawn DIVITT, Wenqi ZHU, Amit Kumar AGRAWAL, Henri LEZEC
  • Patent number: 10720993
    Abstract: A metasurface optical pulse shaper includes a metasurface with superpixels disposed on an entry side of the metasurface and a wire grid polarizer disposed on an exit surface of the metasurface for controlling a phase, amplitude, or polarization of an optical pulse, wherein the metasurface in combination with dispersers provide for optical shaping of the optical pulse. A process for optically changing a pulse shape includes dispersing a primary optical pulse; separating spatially, by frequency, primary frequency waves; changing, by superpixels, a relative phase of the primary frequency waves and producing phase waves that are separated spatially by frequency and phase; and producing a plurality of shaped frequency waves such that, from an individual phase wave, a shaped frequency wave is produced that separated spatially by frequency and phase, such that a superposition of shaped frequency waves produce a shaped optical pulse that has pulse shape that is different than the primary optical pulse.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 21, 2020
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Henri J. Lezec, Amit Agrawal, Wenqi Zhu, Cheng Zhang, Shawn Divitt
  • Publication number: 20190386749
    Abstract: A metasurface optical pulse shaper includes a metasurface with superpixels disposed on an entry side of the metasurface and a wire grid polarizer disposed on an exit surface of the metasurface for controlling a phase, amplitude, or polarization of an optical pulse, wherein the metasurface in combination with dispersers provide for optical shaping of the optical pulse. A process for optically changing a pulse shape includes dispersing a primary optical pulse; separating spatially, by frequency, primary frequency waves; changing, by superpixels, a relative phase of the primary frequency waves and producing phase waves that are separated spatially by frequency and phase; and producing a plurality of shaped frequency waves such that, from an individual phase wave, a shaped frequency wave is produced that separated spatially by frequency and phase, such that a superposition of shaped frequency waves produce a shaped optical pulse that has pulse shape that is different than the primary optical pulse.
    Type: Application
    Filed: May 10, 2019
    Publication date: December 19, 2019
    Inventors: Henri J. Lezec, Amit Agrawal, Wenqi Zhu, Cheng Zhang, Shawn Divitt