Patents by Inventor Shawn M. Tanner

Shawn M. Tanner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10106885
    Abstract: A magnetic write apparatus includes a pole and a near field transducer. The pole extends in a yoke direction from a media facing surface where the yoke direction extends perpendicular to the media facing surface. The near field transducer includes a near field transducer cap and a near field transducer nose. The near field transducer nose is separated from the pole by the near field transducer cap and a dielectric gap and the near field transducer nose comprises a bevel surface that forms a bevel angle with a plane extending in the yoke direction.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: October 23, 2018
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shawn M. Tanner, Mingjun Yu, Min Zheng, Kyung Lee, Tsung Yuan Chen
  • Publication number: 20180005650
    Abstract: A method for fabricating a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) write apparatus is described. The HAMR write apparatus is coupled with a laser for providing energy and has a media-facing surface (MFS) configured to reside in proximity to a media during use. The method includes providing a stack on an underlayer. The stack includes an endpoint detection layer, an optical layer and an etchable layer. The optical layer is between the etchable and endpoint detection layers. The etchable layer is patterned to form a mask. A portion of the optical layer is removed. A remaining portion of the optical layer has a bevel at a bevel angle from the MFS location. The bevel angle is nonzero and acute. The NFT is provided such that the NFT has an NFT front surface adjoining the bevel and at the bevel angle from the MFS location.
    Type: Application
    Filed: September 13, 2017
    Publication date: January 4, 2018
    Inventors: Shawn M. Tanner, Mingjun Yu, Min Zheng, Kyung Lee, Tsung Yuan Chen
  • Patent number: 9786304
    Abstract: A method for fabricating a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) write apparatus is described. The HAMR write apparatus is coupled with a laser for providing energy and has a media-facing surface (MFS) configured to reside in proximity to a media during use. The method includes providing a stack on an underlayer. The stack includes an endpoint detection layer, an optical layer and an etchable layer. The optical layer is between the etchable and endpoint detection layers. The etchable layer is patterned to form a mask. A portion of the optical layer is removed. A remaining portion of the optical layer has a bevel at a bevel angle from the MFS location. The bevel angle is nonzero and acute. The NFT is provided such that the NFT has an NFT front surface adjoining the bevel and at the bevel angle from the MFS location.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 10, 2017
    Assignee: WESTERN DIGITAL (FREMONT), LLC
    Inventors: Shawn M. Tanner, Mingjun Yu, Min Zheng, Kyung Lee, Tsung Yuan Chen
  • Patent number: 9087542
    Abstract: A method for fabricating a structure in a magnetic recording transducer is described. A trench having sidewalls converging in a corner and a depth is formed. A dielectric layer is deposited using physical vapor deposit (PVD). The dielectric layer thickness is not more than one-half of the trench depth. A remaining portion of the trench is unfilled by the dielectric layer and has a top and a bottom. A portion of the dielectric layer is plasma etched. The plasma etch removes the portion of the dielectric layer at the top of the trench at a first rate and removes the portion of the dielectric layer at the bottom of the remaining portion of the trench at a second rate less than the first rate. An additional dielectric layer is deposited, also using PVD. The plasma etch and additional dielectric layer depositing steps are optionally repeated until the trench is filled.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: July 21, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Ut Tran, Shawn M. Tanner, Jerome S. Marcelino, Jikou Zhou
  • Patent number: 8834728
    Abstract: A method provides an EAMR transducer. The EAMR transducer is coupled with a laser and has an ABS configured to reside in proximity to a media during use. The method includes providing an NFT using an NFT mask. The NFT resides proximate to the ABS and focuses the laser energy onto the media. A portion of the NFT mask is removed, forming a heat sink mask covering part of the NFT. Optical material(s) are deposited, covering the heat sink mask and the NFT. The heat sink mask is removed, providing an aperture in the optical material(s). A heat sink corresponding to the aperture is provided. The heat sink bottom is thermally coupled with the NFT. A write pole for writing to the media and coil(s) for energizing the write pole are provided. The write pole has a bottom surface thermally coupled with the top surface of the heat sink.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 16, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Shawn M. Tanner, Ut Tran, Zhongyan Wang, Mirzafer Abatchev
  • Patent number: 8773956
    Abstract: Embodiments of the present invention are directed toward a bi-layer spacer structure and related fabrication processes for improving an interface between a near-field transducer (NFT) and a spacer on an optical waveguide core for an energy assisted magnetic recording (EAMR) system. The embodiments provide a solution for improving the adhesion between the NFT and the spacer.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Zhongyan Wang, Hongxing Yuan, Shawn M. Tanner, Yufeng Hu
  • Patent number: 8753903
    Abstract: Improved pump-probe testing methods and apparatuses for measuring the performance of a plasmon element at wafer level are provided. In one embodiment, the apparatus includes a light source configured to output a first light beam on a grating located at a first end of a waveguide, the waveguide being configured to couple energy of the first light beam to the plasmon element located at a second end of the waveguide, and an optical probe assembly positioned above a top surface of the wafer. The optical probe assembly is configured to direct a second light beam on an area of the wafer including the plasmon element and detect a portion of the second light beam reflected from the area.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: June 17, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu, Sergei Sochava
  • Patent number: 8749790
    Abstract: A structure for measuring energy absorption by a surface plasmon receptor or NFT on a waveguide comprises a first waveguide, a first input grating for coupling light comprising a first wavelength into the first waveguide, a first output grating for coupling light out of the first waveguide, a first plurality of surface plasmon receptors in cooperation with the first waveguide to receive light energy and located between the first input grating and the first output grating. The structure may further comprise a second waveguide, a second input grating for coupling light into the second waveguide, a second output grating for coupling light out of the second waveguide, a second plurality of surface plasmon receptors between the second input grating and the second output grating and in cooperation with the second waveguide to receive light energy, wherein the second plurality may be less than or greater than the first plurality.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: June 10, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu, Ut Tran, Zhongyan Wang, Zhong Shi, Sergei Sochava
  • Patent number: 8721902
    Abstract: A method provides an EAMR transducer. The EAMR transducer is coupled with a laser and has an ABS configured to reside in proximity to a media during use. The EAMR transducer includes an NFT for focusing the energy onto the media. A sacrificial layer is deposited on the NFT and a mask having an aperture provided on the sacrificial layer. A portion of the sacrificial layer exposed by the aperture is removed to form a trench above the NFT. A heat sink is then provided. At least part of the heat sink resides in the trench. The heat sink is thermally coupled to the NFT. Optical material(s) are provided around the heat sink. A write pole configured to write to a region of the media is also provided. The write pole is thermally coupled with the top of the heat sink. Coil(s) for energizing the write pole are also provided.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 13, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Zhongyan Wang, Wei Gao, Shawn M. Tanner, Mirzafer Abatchev, Yanfeng Chen, Yufeng Hu
  • Patent number: 8625233
    Abstract: Systems and methods for fabricating a microelectric device are provided herein. Particular embodiments provide systems and methods for fabricating a magnetic recording pole for a magnetic recording head, such as an energy assisted magnetic recording (EAMR) head commonly used in a disk storage device. Some embodiments provide for systems and methods of fabricating magnetic recording poles that protect the core of the magnetic recording head during the removal of removal of seed layers.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: January 7, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lili Ji, Ming Jiang, Jerome S. Marcelino, Shawn M. Tanner, Dujiang Wan, Tiffany Yun Wen Jiang
  • Patent number: 8565049
    Abstract: A method and system provide a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming an NFT having a disk and a pin. A dielectric layer that substantially covers the NFT is deposited. A portion of the dielectric layer is removed such that the dielectric layer has an aperture therein. The aperture exposes the pin of the NFT. The EAMR transducer is annealed at a temperature greater than the expected operating temperature of the EAMR transducer.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: October 22, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu
  • Patent number: 8491801
    Abstract: A method and system provides a near-field transducer (NFT) for an energy assisted magnetic recording (EAMR) transducer. The method and system include forming a sacrificial NFT structure having a shape a location corresponding to the NFT. A dielectric layer is deposited. A portion of the dielectric layer resides on the sacrificial NFT structure. At least this portion of the dielectric layer on the sacrificial structure is removed. The sacrificial NFT structure is removed, exposing an NFT trench in the dielectric layer. At least one conductive layer for the NFT is deposited. A first portion of the conductive layer(s) reside in the NFT trench. A second portion of the conductive layer(s) external to the NFT trench is removed to form the NFT.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: July 23, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Shawn M. Tanner, Yufeng Hu, Ut Tran, Zhongyan Wang