Patents by Inventor Shawn Shui-on Leung

Shawn Shui-on Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7495081
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: February 24, 2009
    Assignee: Skytech Technology Limited
    Inventor: Shawn Shui-on Leung
  • Patent number: 7491514
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: February 17, 2009
    Assignee: Skytech Technology Limited
    Inventor: Shawn Shui-on Leung
  • Publication number: 20080227957
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Application
    Filed: December 5, 2007
    Publication date: September 18, 2008
    Inventor: Shawn Shui-on LEUNG
  • Publication number: 20080182975
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 31, 2008
    Inventor: Shawn Shui-on LEUNG
  • Patent number: 7338659
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 4, 2008
    Assignee: Skytech Technology Limited
    Inventor: Shawn Shui-on Leung
  • Patent number: 7321026
    Abstract: Framework (FR)-patching is a novel approach to modify immunoglobulin for reducing potential immunogenicity without significant alterations in specificity and affinity. Unlike previous described methods of humanization, which graft CDRs from a donor onto the frameworks of a single acceptor immunoglobulin, we patch segments of framework (FR1, FR2, FR3, and FR4), or FRs, to replace the corresponding FRs of the parent immunoglobulin. Free assortment of these FRs from different immunoglobulins and from different species can be mixed and matched into forming the final immunoglobulin chain. A set of criteria in the choice of these FRs to minimize or eliminate the need to reintroduce framework amino acids from the parent immunoglobulin for patching is described. The approach gives greater flexibility in the choice of framework sequences, minimizes the need to include parent framework amino acids, and, most importantly, reduces the chances of creating new T- and B-cell epitopes in the resultant immunoglobulin.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: January 22, 2008
    Assignee: Skytech Technology Limited
    Inventor: Shawn Shui-on Leung
  • Publication number: 20030040606
    Abstract: A novel approach, named framework (FR)-patching, to re-engineer immunoglobulin so as to reduce the potential immunogenicity, when used in the intended species, in particular, humans, without significant alterations in the specificity and affinity of the resultant immunoglobulin is described. The method differs from previously reported approaches of chimerization, CDR-grafting and/or humanization in that, the variable region sequence of the immunoglobulin to be re-engineered is compartmentalized into FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4, according to the Kabat's method, or any other conventional classification, and each individual FR sequence is dealt with separately and independently, and replaced by the corresponding FR selected from a particular host species, for example human, without modifying the CDR sequences, using a set of criteria described in this invention.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 27, 2003
    Inventor: Shawn Shui-on Leung