Patents by Inventor Shawn Szyjka

Shawn Szyjka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230340539
    Abstract: The present disclosure provides methods for producing gene-edited cells free of gene-editing system molecules through the manipulation of prototrophy. Exemplary system molecules include those required for CRISPR editing techniques, such as plasmids and genes encoding Cas nucleases. The methods may employ constructs that temporarily disrupt prototrophy, the removal of which restores prototrophy. Also disclosed are gene-edited cells and populations of gene-edited cells comprising these constructs. The present methods and compositions may be used to achieve desired gene editing of a host cell in the absence of extraneous genetic material remaining from the genetic engineering technique itself.
    Type: Application
    Filed: May 25, 2021
    Publication date: October 26, 2023
    Inventors: Colin Scott MAXWELL, Solomon Henry STONEBLOOM, Shawn SZYJKA
  • Publication number: 20230265460
    Abstract: Provided herein are nucleic acid constructs comprising multiple guide RNAs interspersed with tRNA sequence at regular intervals as well as expression vectors and compositions comprising the same. Also provided herein are methods for assembling the nucleic acid constructs comprising multiple guide RNAs interspersed with tRNA sequence at regular intervals in a pooled and/or modular manner. Methods for using the nucleic acid constructs comprising multiple guide RNAs interspersed with tRNA sequence at regular intervals to facilitate multiplexed genomic editing of a host cell comprising said nucleic acid constructs are also provided herein.
    Type: Application
    Filed: July 9, 2021
    Publication date: August 24, 2023
    Inventors: Solomon Henry STONEBLOOM, Colin Scott MAXWELL, Shawn SZYJKA
  • Publication number: 20230074594
    Abstract: A CRISPR system is successfully used to modify the genomes of a gram-positive bacterium, such as a species of the Cornybacterium genus. Methods for modifying Corynebacterium species include single-nucleotide changes, creating gene deletions and/or insertions.
    Type: Application
    Filed: August 3, 2022
    Publication date: March 9, 2023
    Inventors: Stephen BLASKOWSKI, Robert COATES, Kedar PATEL, Hendrik Marinus VAN ROSSUM, Shawn SZYJKA
  • Publication number: 20220275361
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alga, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: May 17, 2022
    Publication date: September 1, 2022
    Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Patent number: 11352621
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: June 7, 2022
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 11312951
    Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: April 26, 2022
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 11279940
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 22, 2022
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Patent number: 11208649
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: December 28, 2021
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 11155807
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 26, 2021
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 11155808
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: October 26, 2021
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Patent number: 11130955
    Abstract: Methods, compositions, and kits for high throughput DNA assembly reactions in vitro. Modular CRISPR DNA constructs comprising modular insert DNA parts flanked by cloning tag segments comprising pre-validated CRISPR protospacer/protospacer adjacent motif sequence combinations. High throughput methods of CRISPRi and CRISPRa.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: September 28, 2021
    Assignee: Zymergen Inc.
    Inventors: Brian Chaikind, Hendrik M. Van Rossum, Aaron Miller, Paul Perkovich, Shawn Szyjka, Kedar Patel
  • Publication number: 20210292774
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 23, 2021
    Inventors: Stephen BLASKOWSKI, Sara da Luz Areosa CLETO, Cameron COATES, Aaron MILLER, Sharon NADEMANEE, Melissa NETWAL, Kedar PATEL, Shawn SZYJKA, Philip WEYMAN, Solomon Henry STONEBLOOM, Colin Scott MAXWELL, Elizabeth Lauren MEIER
  • Publication number: 20210284992
    Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.
    Type: Application
    Filed: May 12, 2021
    Publication date: September 16, 2021
    Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Publication number: 20210285014
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in one or more rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in a pooled and/or iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Compositions and kits for performing the methods are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Publication number: 20210261949
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: May 5, 2021
    Publication date: August 26, 2021
    Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Publication number: 20210261950
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Patent number: 11085040
    Abstract: The present disclosure provides systems and methods for host cell improvement utilizing epistatic effects. The systems and methods described herein are host cell agnostic and therefore can be implemented across taxa. Furthermore, the disclosed systems and methods can be implemented to modulate or improve any host cell parameter of interest.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 10, 2021
    Assignee: Zymergen Inc.
    Inventors: Zachariah Serber, Erik Jedediah Dean, Shawn Manchester, Katherine Gora, Michael Flashman, Erin Shellman, Aaron Kimball, Shawn Szyjka, Barbara Frewen, Thomas Treynor, Kenneth S. Bruno
  • Publication number: 20210222156
    Abstract: The present disclosure provides a HTP microbial genomic engineering platform that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. The HTP genomic engineering platform described herein is microbial strain host agnostic and therefore can be implemented across taxa. Furthermore, the disclosed platform can be implemented to modulate or improve any microbial host parameter of interest.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 22, 2021
    Inventors: Zachariah SERBER, Erik Jedediah DEAN, Shawn MANCHESTER, Katherine GORA, Michael FLASHMAN, Erin SHELLMAN, Aaron KIMBALL, Shawn SZYJKA, Barbara FREWEN, Thomas TREYNOR, Kenneth S. BRUNO
  • Patent number: 11053515
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in one or more rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in a pooled and/or iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Compositions and kits for performing the methods are also disclosed.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: July 6, 2021
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Patent number: 11053506
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: July 6, 2021
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier