Patents by Inventor Sheila Grant

Sheila Grant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11796473
    Abstract: The invention broadly relates techniques for imaging and medical diagnosis and, more particularly, to the fabrication of flexible plasmonic gratings and the use thereof in detection of biomarkers. A first aspect of the invention provides for techniques for the fabrication of novel, flexible plasmonic gratings that can be inexpensively fabricated onto fiber optic cables, flexible films and substrates with non-uniform surfaces to enhance the imaging resolution. A second aspect of the invention provides for an ultra¬high sensitivity (single molecule counting) biomarker detection platform useable for medical diagnosis based on a fluorescent sandwich ELISA assay performed on a plasmonic grating platform incorporated with a fluorescence detection unit.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: October 24, 2023
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Sangho Bok, Cherian Joseph Mathai, Keshab Gangopadhyay, Sheila Grant, Aaron Wood, Syed Barizuddin
  • Publication number: 20220175534
    Abstract: The present disclosure provides collagen bioink compositions and chemically uncrosslinked and crosslinked collagen structures including collagen microparticles and scaffolds. Also provided are methods of their fabrication and use. Applications for using these collagen structures include treatments of damaged tissue, particularly those caused by osteoarthritis.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 9, 2022
    Inventors: Sheila Grant, Colten Snider, David Grant
  • Publication number: 20220168463
    Abstract: The present disclosure describes a treatment composition comprising a nanoparticle composition comprising nanoparticles functionalized with surface amine groups and a crosslinking composition comprising genipin. The disclosure also describes a kit comprising the treatment composition, and instructions for using the kit to crosslink the nanoparticles to a tissue graft. The treatment composition and kit can be used to crosslink nanoparticles to a tissue graft, and the resulting tissue graft can be used to replace defective tissue in a subject in need thereof.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 2, 2022
    Inventors: Sheila Grant, David Grant, Colten Snider, Mitchell Bellrichard, Daniel Grant
  • Publication number: 20200173922
    Abstract: The invention broadly relates techniques for imaging and medical diagnosis and, more particularly, to the fabrication of flexible plasmonic gratings and the use thereof in detection of biomarkers. A first aspect of the invention provides for techniques for the fabrication of novel, flexible plasmonic gratings that can be inexpensively fabricated onto fiber optic cables, flexible films and substrates with non-uniform surfaces to enhance the imaging resolution. A second aspect of the invention provides for an ultra¬high sensitivity (single molecule counting) biomarker detection platform useable for medical diagnosis based on a fluorescent sandwich ELISA assay performed on a plasmonic grating platform incorporated with a fluorescence detection unit.
    Type: Application
    Filed: July 11, 2018
    Publication date: June 4, 2020
    Inventors: Shubhra GANGOPADHYAY, Sangho BOK, Cherian Joseph MATHAI, Keshab GANGOPADHYAY, Sheila GRANT, Aaron WOOD, Syed BARIZUDDIN
  • Patent number: 10490679
    Abstract: Provided are nanograting structures and methods of fabrication thereof that allow for stable, robust gratings and nanostructure embedded gratings that enhance electromagnetic field, fluorescence, and photothermal coupling through surface plasmon or, photonic resonance. The gratings produced exhibit long term stability of the grating structure and improved shelf life without degradation of the properties such as fluorescence enhancement. Embodiments of the invention build nanograting structures layer-by-layer to optimize structural and optical properties and to enhance durability.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 26, 2019
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Sangho Bok, Samiullah Pathan, Cherian Joseph Mathai, Sagnik Basuray, Keshab Gangopadhyay, Biyan Chen, Sheila Grant, Aaron Wood
  • Publication number: 20190051863
    Abstract: Provided are nanograting structures and methods of fabrication thereof that allow for stable, robust gratings and nanostructure embedded gratings that enhance electromagnetic field, fluorescence, and photothermal coupling through surface plasmon or, photonic resonance. The gratings produced exhibit long term stability of the grating structure and improved shelf life without degradation of the properties such as fluorescence enhancement. Embodiments of the invention build nanograting structures layer-by-layer to optimize structural and optical properties and to enhance durability.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Inventors: Shubhra GANGOPADHYAY, Sangho BOK, Samiullah PATHAN, Cherian Joseph MATHAI, Sagnik BASURAY, Keshab GANGOPADHYAY, Biyan CHEN, Sheila GRANT, Aaron WOOD
  • Patent number: 10103357
    Abstract: Provided are nanograting structures and methods of fabrication thereof that allow for stable, robust gratings and nanostructure embedded gratings that enhance electromagnetic field, fluorescence, and photothermal coupling through surface plasmon or, photonic resonance. The gratings produced exhibit long term stability of the grating structure and improved shelf life without degradation of the properties such as fluorescence enhancement. Embodiments of the invention build nanograting structures layer-by-layer to optimize structural and optical properties and to enhance durability.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: October 16, 2018
    Assignee: The Curators of the University of Missouri
    Inventors: Shubhra Gangopadhyay, Sangho Bok, Samiullah Pathan, Cherian Joseph Mathai, Sagnik Basuray, Keshab Gangopadhyay, Biyan Chen, Sheila Grant, Aaron Wood
  • Patent number: 9827323
    Abstract: Disclosed are compositions comprising collagen covalently bound to particles, wherein covalent bonds are formed between reactive groups of the collagen and reactive groups of the particles, and wherein the particles have an average particle diameter ranging from 20 to 1000 nanometers. Also disclosed are various methods that utilize the compositions.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: November 28, 2017
    Assignee: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Anthony Harris, Johnathan Thompson, Rebecca Rone, Sheila Grant, David Grant
  • Patent number: 9181571
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: November 10, 2015
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20150004648
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Publication number: 20140302104
    Abstract: Disclosed are compositions comprising collagen covalently bound to particles, wherein covalent bonds are formed between reactive groups of the collagen and reactive groups of the particles, and wherein the particles have an average particle diameter ranging from 20 to 1000 nanometers. Also disclosed are various methods that utilize the compositions.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 9, 2014
    Applicant: The Curators of the University of Missouri
    Inventors: Anthony HARRIS, Jonathan THOMPSON, Rebecca RONE, Sheila GRANT, David GRANT
  • Publication number: 20140099675
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: September 9, 2013
    Publication date: April 10, 2014
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Patent number: 8545769
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 1, 2013
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20120178130
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 12, 2012
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: VENUMADHAV KORAMPALLY, SHUBHRA GANGOPADHYAY, KESHAB GANGOPADHYAY, SHEILA A. GRANT, STEVEN B. KLEIBOEKER, SHANTANU BHATTACHARYA, YUANFANG GAO
  • Patent number: 8173077
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 8, 2012
    Assignee: The Curators of the University of Missouri
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao
  • Publication number: 20120070466
    Abstract: Disclosed are compositions comprising collagen covalently bound to particles, wherein covalent bonds are formed between reactive groups of the collagen and reactive groups of the particles, and wherein the particles have an average particle diameter ranging from 20 to 1000 nanometers. Also disclosed are various methods that utilize the compositions.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 22, 2012
    Applicant: UNIVERSITY OF MISSOURI, OFFICE OF IPA
    Inventors: Anthony Harris, Jonathan Thompson, Rebecca Rone, Sheila Grant, David Grant
  • Patent number: 7943390
    Abstract: A device and a method for measuring viscosity that includes attaching molecular rotors to a solid surface, exposing the solid surface to a fluid having a viscosity to be measured, and taking optical measurements to determine viscosity. The solid surface is preferably quartz, polystyrene or silicate glass, such as a fiber optic probe or a glass cuvette. The molecular rotors are of the type that includes an electron-donor group and electron-acceptor group that are linked by a single bond so that the groups may rotate with respect to one another, and that exhibit a fluorescence emission when rotation is hindered.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: May 17, 2011
    Assignees: The Curators of the University of Missouri, The Regents of the University of California, La Jolla Bioengineering Institute
    Inventors: Mark A. Haidekker, Sheila Grant, Emmanuel Theodorakis, Marcos Intaglietta, John A. Frangos
  • Patent number: 7670844
    Abstract: A device and a method for measuring viscosity that includes attaching molecular rotors to a solid surface, exposing the solid surface to a fluid having a viscosity to be measured, and taking optical measurements to determine viscosity. The solid surface is preferably quartz, polystyrene or silicate glass, such as a fiber optic probe or a glass cuvette. The molecular rotors are of the type that includes an electron-donor group and electron-acceptor group that are linked by a single bond so that the groups may rotate with respect to one another, and that exhibit a fluorescence emission when rotation is hindered.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: March 2, 2010
    Assignees: The Curators of the University of Missouri, The Regents of the University of California, La Jolla Bioengineering Institute
    Inventors: Mark A. Haidekker, Sheila Grant, Emmanuel Theodorakis, Marcos Intaglietta, John A. Frangos
  • Publication number: 20090227880
    Abstract: A device and a method for measuring viscosity that includes attaching molecular rotors to a solid surface, exposing the solid surface to a fluid having a viscosity to be measured, and taking optical measurements to determine viscosity. The solid surface is preferably quartz, polystyrene or silicate glass, such as a fiber optic probe or a glass cuvette. The molecular rotors are of the type that includes an electron-donor group and electron-acceptor group that are linked by a single bond so that the groups may rotate with respect to one another, and that exhibit a fluorescence emission when rotation is hindered.
    Type: Application
    Filed: April 20, 2009
    Publication date: September 10, 2009
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Mark A. Haidekker, Sheila Grant, Emmanuel Theodorakis, Marcos Intaglietta, John A. Frangos
  • Publication number: 20090148910
    Abstract: A DNA amplification device utilizing a polydimethylsiloxane (PDMS) and silicon substrate coated with spin-on glass (SOG) is provided. This PDMS layer is irreversibly bonded to the SOG layer of the silicon substrate using oxygen plasma. The amplification device is an inexpensive, microfluidic device, which can be utilized as a portable thermo-cycler to perform PCR amplification of DNA in the field.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 11, 2009
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Venumadhav Korampally, Shubhra Gangopadhyay, Keshab Gangopadhyay, Sheila A. Grant, Steven B. Kleiboeker, Shantanu Bhattacharya, Yuanfang Gao