Patents by Inventor Sheir Yarkoni
Sheir Yarkoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12293258Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: GrantFiled: September 13, 2023Date of Patent: May 6, 2025Assignee: 1372934 B.C. LTD.Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Publication number: 20240256930Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.Type: ApplicationFiled: November 20, 2023Publication date: August 1, 2024Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
-
Patent number: 12039407Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: GrantFiled: May 31, 2023Date of Patent: July 16, 2024Assignee: D-WAVE SYSTEMS INC.Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Publication number: 20240086748Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: ApplicationFiled: September 13, 2023Publication date: March 14, 2024Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Patent number: 11861455Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.Type: GrantFiled: April 24, 2020Date of Patent: January 2, 2024Assignee: D-WAVE SYSTEMS INC.Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
-
Publication number: 20230385668Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: ApplicationFiled: May 31, 2023Publication date: November 30, 2023Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Patent number: 11797874Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: GrantFiled: July 28, 2021Date of Patent: October 24, 2023Assignee: 1372934 B.C. LTD.Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Patent number: 11704586Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: GrantFiled: May 9, 2022Date of Patent: July 18, 2023Assignee: D-WAVE SYSTEMS INC.Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Publication number: 20220335320Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: ApplicationFiled: May 9, 2022Publication date: October 20, 2022Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Patent number: 11348026Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: GrantFiled: January 31, 2020Date of Patent: May 31, 2022Assignee: D-WAVE SYSTEMS INC.Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Publication number: 20220019929Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: ApplicationFiled: July 28, 2021Publication date: January 20, 2022Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Patent number: 11138511Abstract: Quantum annealers as analog or quantum processors can find paths in problem graphs embedded in a hardware graph of the processor, for example finding valid paths, shortest paths or longest paths. A set of input, for example nucleic acid reads, can be used to set up a graph with edges between nodes denoting overlap (i.e., common base pairs) between the reads with constraints applied to perform sequence alignment or sequencing of a nucleic acid (e.g., DNA) strand or sequence, finding a solution that has a ground state energy. At least a portion of the described approaches can be applied to other problems, for instance resource allocations problems, e.g., job scheduling problems, traveling salesperson problems, and other NP-complete problems.Type: GrantFiled: December 19, 2017Date of Patent: October 5, 2021Assignee: D-WAVE SYSTEMS INC.Inventors: Sheir Yarkoni, Kelly T. R. Boothby, Adam Douglass
-
Patent number: 11100418Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: GrantFiled: February 14, 2019Date of Patent: August 24, 2021Assignee: D-WAVE SYSTEMS INC.Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Yu Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Publication number: 20210248489Abstract: The invention relates to a data processing system for optimizing a live data-producing process, wherein the data processing system comprises: a process data component for providing the process data representing the live data-producing process, a quantum web service component for generating an optimization problem to be solved by a quantum processing unit, wherein the quantum web service component is linked to the process data component for receiving the process data therefrom, wherein the optimization problem is configured for optimizing the live data-producing process based on the process data received from the process data component, and a feedback component for feeding the solution of the optimization problem solved by the quantum processing unit back to the live data-producing process, wherein the feedback component is linked to the quantum web service component for receiving the solution of the optimization problem solved by the quantum processing unit.Type: ApplicationFiled: December 9, 2020Publication date: August 12, 2021Applicant: Volkswagen AktiengesellschaftInventor: Sheir Yarkoni
-
Publication number: 20200320424Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.Type: ApplicationFiled: April 24, 2020Publication date: October 8, 2020Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
-
Patent number: 10671937Abstract: A computational method via a hybrid processor comprising an analog processor and a digital processor includes determining a first classical spin configuration via the digital processor, determining preparatory biases toward the first classical spin configuration, programming an Ising problem and the preparatory biases in the analog processor via the digital processor, evolving the analog processor in a first direction, latching the state of the analog processor for a first dwell time, programming the analog processor to remove the preparatory biases via the digital processor, determining a tunneling energy via the digital processor, determining a second dwell time via the digital processor, evolving the analog processor in a second direction until the analog processor reaches the tunneling energy, and evolving the analog processor in the first direction until the analog processor reaches a second classical spin configuration.Type: GrantFiled: June 7, 2017Date of Patent: June 2, 2020Assignee: D-WAVE SYSTEMS INC.Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin
-
Publication number: 20200167685Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: ApplicationFiled: January 31, 2020Publication date: May 28, 2020Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Patent number: 10599988Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.Type: GrantFiled: March 2, 2017Date of Patent: March 24, 2020Assignee: D-WAVE SYSTEMS INC.Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T.R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
-
Publication number: 20190266508Abstract: The systems, devices, articles, and methods described herein generally relate to analog computers, for example quantum processors comprising qubits, couplers, and, or cavities. Analog computers, for example quantum processor based computers, are the subject of various sources of error which can hinder operation, potentially reducing computational accuracy and speed. Sources of error can be broadly characterized, for example as i) a background susceptibility do to inherently characteristics of the circuitry design, ii) as an h/J ratio imbalance, iii) bit flip errors, iv) fidelity, and v) Anderson localization, and various combinations of the aforesaid.Type: ApplicationFiled: February 14, 2019Publication date: August 29, 2019Inventors: Paul I. Bunyk, James King, Murray C. Thom, Mohammad H. Amin, Anatoly Yu Smirnov, Sheir Yarkoni, Trevor M. Lanting, Andrew D. King, Kelly T. R. Boothby
-
Publication number: 20190266510Abstract: A hybrid computer for generating samples employs a digital computer operable to perform post-processing. An analog computer may be communicatively coupled to the digital computer. The analog computer may be operable to return one or more samples corresponding to low-energy configurations of a Hamiltonian. Methods of generating samples from a quantum Boltzmann distribution to train a Quantum Boltzmann Machine, and from a classical Boltzmann distribution to train a Restricted Boltzmann Machine, are also taught. Computational systems and methods permit processing problems having size and/or connectivity greater than, and/or at least not fully provided by, a working graph of an analog processor.Type: ApplicationFiled: June 7, 2017Publication date: August 29, 2019Inventors: Sheir Yarkoni, Trevor Michael Lanting, Kelly T. R. Boothby, Andrew Douglas King, Evgeny A. Andriyash, Mohammad H. Amin