Patents by Inventor Shekhar Halakatti

Shekhar Halakatti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100175821
    Abstract: A disposable microsensor is designed, fabricated and tested for standard BOD (Biochemical Oxygen Demand) measurements. A transparent Cyclic Olefin Copolymer (COC) substrate is used for sensor fabrication. Standard lithographic procedures in addition to techniques like screen printing and electroplating are used to fabricate the sensor. A microbial strain of Trichosporon Cutaneum is immobilized over one pair of sensor electrodes while the other is used as a reference. Depending on the respiratory activities of the microbial strain in different samples, the BOD values of the samples can be measured in terms of difference between the output signals. The sensor layer is attached to an injection-molded passive microfluidic channel on the top. Advantages of the BOD microsensor include, but are not limited to, fast BOD measurement, disposability because of its low cost, chemically inert polymer substrate, flow-through sample injection scheme and integration of on-chip optics.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 15, 2010
    Inventors: Hyoung Jin Cho, Shekhar Halakatti, Anjum Mehta
  • Patent number: 7666285
    Abstract: A disposable microsensor is designed, fabricated and tested for standard BOD (Biochemical Oxygen Demand) measurements. A transparent Cyclic Olefin Copolymer (COC) substrate is used for sensor fabrication. Standard lithographic procedures in addition to techniques like screen printing and electroplating are used to fabricate the sensor. A microbial strain of Trichosporon Cutaneum is immobilized over one pair of sensor electrodes while the other is used as a reference. Depending on the respiratory activities of the microbial strain in different samples, the BOD values of the samples can be measured in terms of difference between the output signals. The sensor layer is attached to an injection-molded passive microfluidic channel on the top. Advantages of the BOD microsensor include, but are not limited to, fast BOD measurement, disposability because of its low cost, chemically inert polymer substrate, flow-through sample injection scheme and integration of on-chip optics.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: February 23, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Hyoung Jin Cho, Shekhar Halakatti, Anjum Mehta