Patents by Inventor Shelby F. Nelson

Shelby F. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8946070
    Abstract: Producing a transistor includes providing a substrate including in order a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate including a reentrant profile is formed from an electrically conductive material layer stack provided on the first electrically insulating material layer in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. The gate including the reentrant profile and at least a portion of the first electrically insulating material layer are conformally coated with a second electrically insulating material layer. The second electrically insulating material layer is conformally coated the with a semiconductor material layer. A source and drain electrodes are formed simultaneously by directionally depositing a second electrically conductive material layer on portions of the semiconductor material layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: February 3, 2015
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8937016
    Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate having a patterned thin layer of polymeric inhibitor on the surface. The substrate and the patterned thin layer of polymeric inhibitor are exposed to a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in areas without inhibitor using an atomic layer deposition process.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: January 20, 2015
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
  • Patent number: 8927434
    Abstract: A method of producing a patterned inorganic thin film dielectric stack includes providing a substrate. A first patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the first deposition inhibiting material layer is not present using an atomic layer deposition process. The first deposition inhibiting and first inorganic thin film dielectric material layers are simultaneously treated after deposition of the first inorganic thin film dielectric material layer. A second patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the second deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 6, 2015
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8921236
    Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate. A thin layer of polymeric inhibitor is uniformly depositing on the substrate. A patterned mask having open areas is provided on the thin layer of polymeric inhibitor. The thin layer of polymeric inhibitor is patterned by removing inhibitor from areas exposed by the open areas of the patterned mask using a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in the areas exposed by the removal of the thin layer of polymeric inhibitor using an atomic layer deposition process.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: December 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
  • Publication number: 20140374806
    Abstract: A transistor includes a substrate, a first electrically conductive material layer positioned on the substrate, and a first electrically insulating material layer is positioned on the first electrically conductive material layer. A gate includes a second electrically conductive material and a reentrant profile in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. A second electrically insulating material layer conforms to the reentrant profile of the gate and in positioned on at least a portion of the first electrically insulating material layer. A semiconductor material layer conforms to and is in contact with the second electrically insulating material layer.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Publication number: 20140374762
    Abstract: An electrical circuit includes a substrate and a plurality of transistors. The plurality of transistors includes a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate includes a second electrically conductive material and a reentrant profile in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. A second electrically insulating material layer conforms to the reentrant profile of the gate and in positioned on at least a portion of the first electrically insulating material layer. A semiconductor material ayer conforms to and is in contact with the second electrically insulating material layer.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Publication number: 20140377943
    Abstract: Producing a transistor includes providing a substrate including in order a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate including a reentrant profile is formed from an electrically conductive material layer stack provided on the first electrically insulating material layer in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. The gate including the reentrant profile and at least a portion of the first electrically insulating material layer are conformally coated with a second electrically insulating material layer. The second electrically insulating material layer is conformally coated the with a semiconductor material layer. A source and drain electrodes are formed simultaneously by directionally depositing a second electrically conductive material layer on portions of the semiconductor material layer.
    Type: Application
    Filed: June 19, 2013
    Publication date: December 25, 2014
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Publication number: 20140377955
    Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate having a patterned thin layer of polymeric inhibitor on the surface. The substrate and the patterned thin layer of polymeric inhibitor are exposed to a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in areas without inhibitor using an atomic layer deposition process.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
  • Publication number: 20140377963
    Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate. A thin layer of polymeric inhibitor is uniformly depositing on the substrate. A patterned mask having open areas is provided on the thin layer of polymeric inhibitor. The thin layer of polymeric inhibitor is patterned by removing inhibitor from areas exposed by the open areas of the patterned mask using a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in the areas exposed by the removal of the thin layer of polymeric inhibitor using an atomic layer deposition process.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
  • Patent number: 8865576
    Abstract: A method of producing a transistor includes providing a substrate including an electrically conductive material layer stack positioned on the substrate. A first electrically insulating material layer is deposited so that the first electrically insulating material layer contacts a first portion of the electrically conductive material layer stack. A second electrically insulating material layer is conformally deposited so that the second electrically insulating material contacts the first electrically insulating layer, and contacts a second portion of the electrically conductive material layer stack, and contacts at least a portion of the substrate.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 21, 2014
    Assignee: Eastman Kodak Company
    Inventors: Shelby F. Nelson, Lee W. Tutt
  • Patent number: 8847232
    Abstract: A transistor includes a substrate. A first electrically conductive material layer, having a thickness, is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer overhangs the first electrically conductive material layer. An electrically insulating material layer, having a thickness, is conformally positioned over the second electrically conductive material layer, the first electrically conductive material layer, and at least a portion of the substrate. The thickness of the first electrically conductive material layer is greater than the thickness of the electrically insulating material layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8847226
    Abstract: A transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer includes a reentrant profile. The second electrically conductive material layer also overhangs the first electrically conductive material layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8846545
    Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8803203
    Abstract: A transistor includes a substrate, an electrically conductive material layer, and an electrically insulating material layer. At least a portion of one or more of the substrate, the electrically conductive material layer, and the electrically insulating material layer define a reentrant profile.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 12, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8803227
    Abstract: A transistor includes a substrate and an electrically conductive material layer stack positioned on the substrate. The electrically conductive material layer stack includes a reentrant profile. A first electrically insulating material layer positioned is in contact with a first portion of the electrically conductive material layer stack. A second electrically insulating material layer is conformally positioned in contact with the first electrically insulating layer, and conformally positioned in contact with a second portion of the electrically conductive material layer stack, and conformally positioned in contact with at least a portion of the substrate.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: August 12, 2014
    Assignee: Eastman Kodak Company
    Inventors: Shelby F. Nelson, Lee W. Tutt
  • Patent number: 8791023
    Abstract: A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 29, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8740323
    Abstract: A continuous liquid ejector includes a structure including a wall. A portion of the wall defines a nozzle having a first fluidic resistance R1. A first liquid feed channel is in fluid communication with the nozzle. The first liquid feed channel has a second fluidic resistance R2. A first drop forming mechanism is associated with the first liquid feed channel. A second liquid feed channel is in fluid communication with the nozzle. The second liquid feed channel has a third fluidic resistance R3. The first fluidic resistance R1 is less than the second fluidic resistance R2 plus the third fluid resistance R3 (R1<(R2+R3)). A second drop forming mechanism associated with the second liquid feed channel.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 3, 2014
    Assignee: Eastman Kodak Company
    Inventors: Shelby F. Nelson, Andrew D. Thompson
  • Patent number: 8698230
    Abstract: An electrical circuit includes first and second transistors. Each transistor includes a substrate and, positioned thereon, a first electrically conductive material layer including a reentrant profile functioning as a gate. First and second discrete portions of a second electrically conductive material layer are in contact with first and second portions, respectively, of a semiconductor material layer in contact with an electrically insulating material layer, both of which conform to the reentrant profile. The first and second discrete portions are source/drain and drain/source electrodes of the first and second transistors, respectively. A third electrically conductive material layer, in contact with a third portion of the semiconductor material layer, is positioned over the gate, but is not in electrical contact with it.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 15, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8674748
    Abstract: A method of actuating a semiconductor device includes providing a transistor. The transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. A third electrically conductive material layer is in contact with and positioned on the second electrically conductive material layer. The third electrically conductive material layer overhangs the second electrically conductive material layer. An electrically insulating material layer is conformally positioned over the third electrically conductive material layer, the second electrically conductive material layer, the first electrically conductive material layer, and at least a portion of the substrate. A semiconductor material layer conforms to and is in contact with the electrically insulating material layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: March 18, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Publication number: 20140061869
    Abstract: An electronic element includes a substrate; a patterned first electrically conductive layer on the substrate; a patterned second electrically conductive layer on the substrate; and a dielectric stack on the substrate. A portion of the first electrically conductive layer and a portion of the second electrically conductive layer overlap each other such that an overlap region is present. At least a portion of the dielectric stack is positioned in the overlap region between the patterned first electrically conductive layer and the patterned second electrically conductive layer. The dielectric stack includes a first inorganic thin film dielectric material layer and a second inorganic thin film dielectric material layer. The first inorganic thin film dielectric material layer and the second inorganic thin film dielectric material layer have the same material composition.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: Shelby F. Nelson, Carolyn R. Ellinger, David H. Levy