Patents by Inventor Shelby F. Nelson
Shelby F. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8946070Abstract: Producing a transistor includes providing a substrate including in order a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate including a reentrant profile is formed from an electrically conductive material layer stack provided on the first electrically insulating material layer in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. The gate including the reentrant profile and at least a portion of the first electrically insulating material layer are conformally coated with a second electrically insulating material layer. The second electrically insulating material layer is conformally coated the with a semiconductor material layer. A source and drain electrodes are formed simultaneously by directionally depositing a second electrically conductive material layer on portions of the semiconductor material layer.Type: GrantFiled: June 19, 2013Date of Patent: February 3, 2015Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8937016Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate having a patterned thin layer of polymeric inhibitor on the surface. The substrate and the patterned thin layer of polymeric inhibitor are exposed to a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in areas without inhibitor using an atomic layer deposition process.Type: GrantFiled: June 21, 2013Date of Patent: January 20, 2015Assignee: Eastman Kodak CompanyInventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
-
Patent number: 8927434Abstract: A method of producing a patterned inorganic thin film dielectric stack includes providing a substrate. A first patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the first deposition inhibiting material layer is not present using an atomic layer deposition process. The first deposition inhibiting and first inorganic thin film dielectric material layers are simultaneously treated after deposition of the first inorganic thin film dielectric material layer. A second patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the second deposition inhibiting material layer is not present using an atomic layer deposition process.Type: GrantFiled: August 31, 2012Date of Patent: January 6, 2015Assignee: Eastman Kodak CompanyInventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
-
Patent number: 8921236Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate. A thin layer of polymeric inhibitor is uniformly depositing on the substrate. A patterned mask having open areas is provided on the thin layer of polymeric inhibitor. The thin layer of polymeric inhibitor is patterned by removing inhibitor from areas exposed by the open areas of the patterned mask using a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in the areas exposed by the removal of the thin layer of polymeric inhibitor using an atomic layer deposition process.Type: GrantFiled: June 21, 2013Date of Patent: December 30, 2014Assignee: Eastman Kodak CompanyInventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
-
Publication number: 20140377963Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate. A thin layer of polymeric inhibitor is uniformly depositing on the substrate. A patterned mask having open areas is provided on the thin layer of polymeric inhibitor. The thin layer of polymeric inhibitor is patterned by removing inhibitor from areas exposed by the open areas of the patterned mask using a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in the areas exposed by the removal of the thin layer of polymeric inhibitor using an atomic layer deposition process.Type: ApplicationFiled: June 21, 2013Publication date: December 25, 2014Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
-
Publication number: 20140374806Abstract: A transistor includes a substrate, a first electrically conductive material layer positioned on the substrate, and a first electrically insulating material layer is positioned on the first electrically conductive material layer. A gate includes a second electrically conductive material and a reentrant profile in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. A second electrically insulating material layer conforms to the reentrant profile of the gate and in positioned on at least a portion of the first electrically insulating material layer. A semiconductor material layer conforms to and is in contact with the second electrically insulating material layer.Type: ApplicationFiled: June 19, 2013Publication date: December 25, 2014Inventors: Lee W. Tutt, Shelby F. Nelson
-
Publication number: 20140377955Abstract: A method of producing a patterned inorganic thin film element includes providing a substrate having a patterned thin layer of polymeric inhibitor on the surface. The substrate and the patterned thin layer of polymeric inhibitor are exposed to a highly reactive oxygen process. An inorganic thin film layer is deposited on the substrate in areas without inhibitor using an atomic layer deposition process.Type: ApplicationFiled: June 21, 2013Publication date: December 25, 2014Inventors: Carolyn R. Ellinger, Shelby F. Nelson, Kurt D. Sieber
-
Publication number: 20140374762Abstract: An electrical circuit includes a substrate and a plurality of transistors. The plurality of transistors includes a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate includes a second electrically conductive material and a reentrant profile in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. A second electrically insulating material layer conforms to the reentrant profile of the gate and in positioned on at least a portion of the first electrically insulating material layer. A semiconductor material ayer conforms to and is in contact with the second electrically insulating material layer.Type: ApplicationFiled: June 19, 2013Publication date: December 25, 2014Inventors: Lee W. Tutt, Shelby F. Nelson
-
Publication number: 20140377943Abstract: Producing a transistor includes providing a substrate including in order a first electrically conductive material layer positioned on the substrate and a first electrically insulating material layer positioned on the first electrically conductive material layer. A gate including a reentrant profile is formed from an electrically conductive material layer stack provided on the first electrically insulating material layer in which a first portion of the gate is sized and positioned to extend beyond a second portion of the gate. The gate including the reentrant profile and at least a portion of the first electrically insulating material layer are conformally coated with a second electrically insulating material layer. The second electrically insulating material layer is conformally coated the with a semiconductor material layer. A source and drain electrodes are formed simultaneously by directionally depositing a second electrically conductive material layer on portions of the semiconductor material layer.Type: ApplicationFiled: June 19, 2013Publication date: December 25, 2014Inventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8865576Abstract: A method of producing a transistor includes providing a substrate including an electrically conductive material layer stack positioned on the substrate. A first electrically insulating material layer is deposited so that the first electrically insulating material layer contacts a first portion of the electrically conductive material layer stack. A second electrically insulating material layer is conformally deposited so that the second electrically insulating material contacts the first electrically insulating layer, and contacts a second portion of the electrically conductive material layer stack, and contacts at least a portion of the substrate.Type: GrantFiled: September 29, 2011Date of Patent: October 21, 2014Assignee: Eastman Kodak CompanyInventors: Shelby F. Nelson, Lee W. Tutt
-
Patent number: 8847226Abstract: A transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer includes a reentrant profile. The second electrically conductive material layer also overhangs the first electrically conductive material layer.Type: GrantFiled: January 7, 2011Date of Patent: September 30, 2014Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8847232Abstract: A transistor includes a substrate. A first electrically conductive material layer, having a thickness, is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer overhangs the first electrically conductive material layer. An electrically insulating material layer, having a thickness, is conformally positioned over the second electrically conductive material layer, the first electrically conductive material layer, and at least a portion of the substrate. The thickness of the first electrically conductive material layer is greater than the thickness of the electrically insulating material layer.Type: GrantFiled: January 7, 2011Date of Patent: September 30, 2014Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8846545Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.Type: GrantFiled: August 31, 2012Date of Patent: September 30, 2014Assignee: Eastman Kodak CompanyInventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
-
Patent number: 8803203Abstract: A transistor includes a substrate, an electrically conductive material layer, and an electrically insulating material layer. At least a portion of one or more of the substrate, the electrically conductive material layer, and the electrically insulating material layer define a reentrant profile.Type: GrantFiled: February 26, 2010Date of Patent: August 12, 2014Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8803227Abstract: A transistor includes a substrate and an electrically conductive material layer stack positioned on the substrate. The electrically conductive material layer stack includes a reentrant profile. A first electrically insulating material layer positioned is in contact with a first portion of the electrically conductive material layer stack. A second electrically insulating material layer is conformally positioned in contact with the first electrically insulating layer, and conformally positioned in contact with a second portion of the electrically conductive material layer stack, and conformally positioned in contact with at least a portion of the substrate.Type: GrantFiled: September 29, 2011Date of Patent: August 12, 2014Assignee: Eastman Kodak CompanyInventors: Shelby F. Nelson, Lee W. Tutt
-
Patent number: 8791023Abstract: A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process.Type: GrantFiled: August 31, 2012Date of Patent: July 29, 2014Assignee: Eastman Kodak CompanyInventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
-
Patent number: 8740323Abstract: A continuous liquid ejector includes a structure including a wall. A portion of the wall defines a nozzle having a first fluidic resistance R1. A first liquid feed channel is in fluid communication with the nozzle. The first liquid feed channel has a second fluidic resistance R2. A first drop forming mechanism is associated with the first liquid feed channel. A second liquid feed channel is in fluid communication with the nozzle. The second liquid feed channel has a third fluidic resistance R3. The first fluidic resistance R1 is less than the second fluidic resistance R2 plus the third fluid resistance R3 (R1<(R2+R3)). A second drop forming mechanism associated with the second liquid feed channel.Type: GrantFiled: October 25, 2011Date of Patent: June 3, 2014Assignee: Eastman Kodak CompanyInventors: Shelby F. Nelson, Andrew D. Thompson
-
Patent number: 8698230Abstract: An electrical circuit includes first and second transistors. Each transistor includes a substrate and, positioned thereon, a first electrically conductive material layer including a reentrant profile functioning as a gate. First and second discrete portions of a second electrically conductive material layer are in contact with first and second portions, respectively, of a semiconductor material layer in contact with an electrically insulating material layer, both of which conform to the reentrant profile. The first and second discrete portions are source/drain and drain/source electrodes of the first and second transistors, respectively. A third electrically conductive material layer, in contact with a third portion of the semiconductor material layer, is positioned over the gate, but is not in electrical contact with it.Type: GrantFiled: February 22, 2012Date of Patent: April 15, 2014Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Patent number: 8674748Abstract: A method of actuating a semiconductor device includes providing a transistor. The transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. A third electrically conductive material layer is in contact with and positioned on the second electrically conductive material layer. The third electrically conductive material layer overhangs the second electrically conductive material layer. An electrically insulating material layer is conformally positioned over the third electrically conductive material layer, the second electrically conductive material layer, the first electrically conductive material layer, and at least a portion of the substrate. A semiconductor material layer conforms to and is in contact with the electrically insulating material layer.Type: GrantFiled: January 7, 2011Date of Patent: March 18, 2014Assignee: Eastman Kodak CompanyInventors: Lee W. Tutt, Shelby F. Nelson
-
Publication number: 20140065803Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.Type: ApplicationFiled: August 31, 2012Publication date: March 6, 2014Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson