Patents by Inventor Sheldon Weinbaum

Sheldon Weinbaum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8882674
    Abstract: A system includes an in vivo imaging device for imaging a blood vessel with a resolution level of at least fifty micrometers. The in vivo imaging device is capable of detecting a microcalcification in a fibrous cap of an atheroma. The system also includes a processor for receiving an image of the blood vessel from the in vivo imaging device. The processor uses the image to determine whether the blood vessel contains at least one microcalcification within the fibrous cap. In some embodiments, the processor is configured and arranged to predict a risk of rupture of the fibrous cap based, at least in part, on the presence of the at least one microcalcification. In some embodiments, treatment of a patient is based on the determination from the imaging whether the blood vessel includes at least one microcalcification within the fibrous cap of the atheroma.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: November 11, 2014
    Assignees: Research Foundation of the City University of New York, Columbia University
    Inventors: Sheldon Weinbaum, Yuliya Vengrenyuk, Luis Cardoso, Lucas Parra, Stephane Carlier, Savvas Xanthos
  • Patent number: 8261668
    Abstract: A vehicle track including a soft porous material and a vehicle which rides on the track by skiing cm the soft porous material. The vehicle has a large ski surface that rides on the soft porous material, supporting the weight of the vehicle at high speeds. Air within the soft porous material supplies most of the lift needed to support the train, Only a small amount of the support is provided by the structure of the porous material itself when the vehicle is in motion. As a result, the friction between the soft porous material and the ski surface may also be exceedingly small. To increase the amount of lift provided by the soft porous material it can be contained within a channel having impermeable sides and bottom. If the ski surface is substantially the same width as the channel, the impermeable sides prevent the air from escaping on either side of die ski surface. Accordingly, the trapped air contributes to greatly enhanced lift force.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 11, 2012
    Assignee: Research Foundation of the City University of New York
    Inventors: Sheldon Weinbaum, Yiannis Andreopoulus, Parisa Mirbod
  • Publication number: 20110308422
    Abstract: A vehicle track including a soft porous material and a vehicle which rides on the track by skiing cm the soft porous material. The vehicle has a large ski surface that rides on the soft porous material, supporting the weight of the vehicle at high speeds. Air within the soft porous material supplies most of the lift needed to support the train, Qniy a small amount of the support is provided by the structure of the porous material itself when the vehicle is in motion. As a result, the friction between the soft porous material and the ski surface may also be exceedingly small. To increase the amount of lift provided by the soft porous material it can be contained within a channel having impermeable sides and bottom. If the ski surface is substantially the same width as the channel, the impermeable sides prevent the air from escaping on either side of die ski surface. Accordingly, the trapped air contributes to greatly enhanced lift force.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 22, 2011
    Applicant: RESEARCH FOUNDATION OF THE CITY OF NEW YORK
    Inventors: Sheldon Weinbaum, Yiannis Andreopoulus, Parisa Mirbod
  • Publication number: 20080091105
    Abstract: A system includes an in vivo imaging device for imaging a blood vessel with a resolution level of at least fifty micrometers. The in vivo imaging device is capable of detecting a microcalcification in a fibrous cap of an atheroma. The system also includes a processor for receiving an image of the blood vessel from the in vivo imaging device. The processor uses the image to determine whether the blood vessel contains at least one microcalcification within the fibrous cap. In some embodiments, the processor is configured and arranged to predict a risk of rupture of the fibrous cap based, at least in part, on the presence of the at least one microcalcification. In some embodiments, treatment of a patient is based on the determination from the imaging whether the blood vessel includes at least one microcalcification within the fibrous cap of the atheroma.
    Type: Application
    Filed: September 25, 2007
    Publication date: April 17, 2008
    Inventors: Sheldon Weinbaum, Yuliya Vengrenyuk, Luis Cardoso, Lucas Parra, Stephane Carlier, Savvas Xanthos