Patents by Inventor Shem Ogadhoh
Shem Ogadhoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11832438Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: November 28, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Jared Stoeger, Yu-Wen Huang, Shu Zhou
-
Publication number: 20230290722Abstract: An integrated circuit (IC) includes a first memory cell and a second memory cell. The first memory cell includes (i) a first transistor and (ii) a first capacitor coupled to the first transistor, where an upper electrode of the first capacitor is coupled to a first conductive structure. The second memory cell is above the first memory cell. The second memory cell includes (i) a second transistor and (ii) a second capacitor coupled to the second transistor. An upper electrode of the second capacitor is coupled to a second conductive structure. In an example, an interconnect feature includes a continuous and monolithic body of conductive material. In an example, the continuous and monolithic body extends through the second conductive structure, and further extends through the first conductive structure. In an example, the first and second memory cells are dynamic random access memory (DRAM) memory cells.Type: ApplicationFiled: March 11, 2022Publication date: September 14, 2023Applicant: Intel CorporationInventors: Travis W. Lajoie, Juan Alzate Vinasco, Abhishek Anil Sharma, Van H. Le, Moshe Dolejsi, Yu-Wen Huang, Kimberly Pierce, Jared Stoeger, Shem Ogadhoh
-
Publication number: 20230200043Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: February 14, 2023Publication date: June 22, 2023Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Patent number: 11652047Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: May 16, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Ting Chen, Vinaykumar V. Hadagali
-
Patent number: 11610894Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: GrantFiled: June 28, 2019Date of Patent: March 21, 2023Assignee: Intel CorporationInventors: Travis W. Lajoie, Abhishek A. Sharma, Van H. Le, Chieh-Jen Ku, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani, Gregory George, Akash Garg, Julie Rollins, Allen B. Gardiner, Shem Ogadhoh, Juan G. Alzate Vinasco, Umut Arslan, Fatih Hamzaoglu, Nikhil Mehta, Yu-Wen Huang, Shu Zhou
-
Method of contact patterning of thin film transistors for embedded DRAM using a multi-layer hardmask
Patent number: 11563107Abstract: An integrated circuit structure comprises one or more backend-of-line (BEOL) interconnects formed over a first ILD layer. An etch stop layer is over the one or more BEOL interconnects, the etch stop layer having a plurality of vias that are in contact with the one or more BEOL interconnects. An array of BEOL thin-film-transistors (TFTs) is over the etch stop layer, wherein adjacent ones of the BEOL TFTs are separated by isolation trench regions. The TFTs are aligned with at least one of the plurality of vias to connect to the one or more BEOL interconnects, wherein each of the BEOL TFTs comprise a bottom gate electrode, a gate dielectric layer over the bottom gate electrode, and an oxide-based semiconductor channel layer over the bottom gate electrode having source and drain regions therein. Contacts are formed over the source and drain regions of each of BEOL TFTs, wherein the contacts have a critical dimension of 35 nm or less, and wherein the BEOL TFTs have an absence of diluted hydro-fluoride (DHF).Type: GrantFiled: March 22, 2019Date of Patent: January 24, 2023Assignee: Intel CorporationInventors: Chieh-Jen Ku, Bernhard Sell, Pei-Hua Wang, Nikhil Mehta, Shu Zhou, Jared Stoeger, Allen B. Gardiner, Akash Garg, Shem Ogadhoh, Vinaykumar Hadagali, Travis W. Lajoie -
Publication number: 20220415897Abstract: A device structure includes a first interconnect line along a longitudinal direction and a second interconnect line parallel to the first interconnect line, where the first interconnect structure is within a first metallization level and the second interconnect line is within a second metallization level. A first transistor and a laterally separated second transistor are on a same plane above the second interconnect line, where a gate of the first transistor is coupled to the first interconnect line and a gate of the second transistor is coupled to the second interconnect line. A first capacitor is coupled to a first terminal of the first transistor and a second capacitor is coupled to a first terminal of the second transistor. A third interconnect line couples a second terminal of the first transistor with a second terminal of the second transistor.Type: ApplicationFiled: June 25, 2021Publication date: December 29, 2022Applicant: Intel CorporationInventors: Juan G. Alzate-Vinasco, Travis W. LaJoie, Elliot N. Tan, Kimberly Pierce, Shem Ogadhoh, Abhishek A. Sharma, Bernhard Sell, Pei-Hua Wang, Chieh-Jen Ku
-
Publication number: 20220320275Abstract: An integrated circuit includes a base, a first transistor structure on or above the base, and a second transistor structure on or above the base, where the second transistor structure is spaced from the first transistor structure. An insulator material at least partially encapsulates an airgap or other gas pocket laterally between the first transistor structure and the second transistor structure. The gas pocket is at least 5 nm in height and at least 5 nm wide according to an embodiment, and in some cases is as tall or taller than active device layers of the transistor structures it separates.Type: ApplicationFiled: June 23, 2022Publication date: October 6, 2022Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Juan ALZATE-VINASCO, Chieh-Jen KU, Shem OGADHOH, Allen B. GARDINER, Blake LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
-
Patent number: 11404536Abstract: An integrated circuit includes a base, a first transistor structure on or above the base, and a second transistor structure on or above the base, where the second transistor structure is spaced from the first transistor structure. An insulator material at least partially encapsulates an airgap or other gas pocket laterally between the first transistor structure and the second transistor structure. The gas pocket is at least 5 nm in height and at least 5 nm wide according to an embodiment, and in some cases is as tall or taller than active device layers of the transistor structures it separates.Type: GrantFiled: March 30, 2018Date of Patent: August 2, 2022Assignee: Intel CorporationInventors: Travis W. LaJoie, Abhishek A. Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem Ogadhoh, Allen B. Gardiner, Blake Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
-
Publication number: 20210366821Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.Type: ApplicationFiled: August 10, 2021Publication date: November 25, 2021Inventors: Travis LAJOIE, Abhishek SHARMA, Juan ALZATE-VINASCO, Chieh-Jen KU, Shem OGADHOH, Allen GARDINER, Blake LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
-
Patent number: 11121073Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.Type: GrantFiled: April 2, 2018Date of Patent: September 14, 2021Assignee: Intel CorporationInventors: Travis Lajoie, Abhishek Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem Ogadhoh, Allen Gardiner, Blake Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
-
Publication number: 20200411426Abstract: Embodiments herein describe techniques for a semiconductor device having an interconnect structure including an inter-level dielectric (ILD) layer between a first layer and a second layer of the interconnect structure. The interconnect structure further includes a separation layer within the ILD layer. The ILD layer includes a first area with a first height to extend from a first surface of the ILD layer to a second surface of the ILD layer. The ILD layer further includes a second area with a second height to extend from the first surface of the ILD layer to a surface of the separation layer, where the first height is larger than the second height. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Ting CHEN, Vinaykumar V. HADAGALI
-
Publication number: 20200411635Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. The semiconductor device further includes a capacitor having a bottom plate above the substrate, a capacitor dielectric layer adjacent to and above the bottom plate, and a top plate adjacent to and above the capacitor dielectric layer. The bottom plate, the capacitor dielectric layer, and the top plate are within the first ILD layer or the second ILD layer. Furthermore, an air gap is formed next to the top plate and below a top surface of the second ILD layer. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411525Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate. A first capacitor includes a first top plate and a first bottom plate above the substrate. The first top plate is coupled to a first metal electrode within an inter-level dielectric (ILD) layer to access the first capacitor. A second capacitor includes a second top plate and a second bottom plate, where the second top plate is coupled to a second metal electrode within the ILD layer to access the second capacitor. The second metal electrode is disjoint from the first metal electrode. The first capacitor is accessed through the first metal electrode without accessing the second capacitor through the second metal electrode. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Jared STOEGER, Yu-Wen HUANG, Shu ZHOU
-
Publication number: 20200411520Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate, a first inter-level dielectric (ILD) layer above the substrate, and a second ILD layer above the first ILD layer. A first capacitor and a second capacitor are formed within the first ILD layer and the second ILD layer. A first top plate of the first capacitor and a second top plate of the second capacitor are formed at a boundary between the first ILD layer and the second ILD layer. The first capacitor and the second capacitor are separated by a dielectric area in the first ILD layer. The dielectric area includes a first dielectric area that is coplanar with the first top plate or the second top plate, and a second dielectric area above the first dielectric area and to separate the first top plate and the second top plate. Other embodiments may be described and/or claimed.Type: ApplicationFiled: June 28, 2019Publication date: December 31, 2020Inventors: Travis W. LAJOIE, Abhishek A. SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Gregory GEORGE, Akash GARG, Julie ROLLINS, Allen B. GARDINER, Shem OGADHOH, Juan G. ALZATE VINASCO, Umut ARSLAN, Fatih HAMZAOGLU, Nikhil MEHTA, Yu-Wen HUANG, Shu ZHOU
-
METHOD OF CONTACT PATTERNING OF THIN FILM TRANSISTORS FOR EMBEDDED DRAM USING A MULTI-LAYER HARDMASK
Publication number: 20200303520Abstract: An integrated circuit structure comprises one or more backend-of-line (BEOL) interconnects formed over a first ILD layer. An etch stop layer is over the one or more BEOL interconnects, the etch stop layer having a plurality of vias that are in contact with the one or more BEOL interconnects. An array of BEOL thin-film-transistors (TFTs) is over the etch stop layer, wherein adjacent ones of the BEOL TFTs are separated by isolation trench regions. The TFTs are aligned with at least one of the plurality of vias to connect to the one or more BEOL interconnects, wherein each of the BEOL TFTs comprise a bottom gate electrode, a gate dielectric layer over the bottom gate electrode, and an oxide-based semiconductor channel layer over the bottom gate electrode having source and drain regions therein. Contacts are formed over the source and drain regions of each of BEOL TFTs, wherein the contacts have a critical dimension of 35 nm or less, and wherein the BEOL TFTs have an absence of diluted hydro-fluoride (DHF).Type: ApplicationFiled: March 22, 2019Publication date: September 24, 2020Inventors: Chieh-Jen KU, Bernhard SELL, Pei-Hua WANG, Nikhil MEHTA, Shu ZHOU, Jared STOEGER, Allen B. GARDINER, Akash GARG, Shem OGADHOH, Vinaykumar HADAGALI, Travis W. LAJOIE -
Publication number: 20190304897Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.Type: ApplicationFiled: April 2, 2018Publication date: October 3, 2019Inventors: Travis LAJOIE, Abhishek SHARMA, Juan ALZATE-VINASCO, Chieh-Jen KU, Shem OGADHOH, Allen GARDINER, Blake LIN, Yih WANG, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI
-
Patent number: 8778605Abstract: Described herein is mask design and modeling for a set of masks to be successively imaged to print a composite pattern on a substrate, such as a semiconductor wafer. Further described herein is a method of double patterning a substrate with the set of masks. Also described herein is a method of correcting a drawn pattern of one of the mask levels based on a predicted pattern contour of the other of the mask levels. Also described herein is a method of modeling a resist profile contour for a mask level in which photoresist is applied onto a inhomogeneous substrate, as well as method of predicting a resist profile of a Boolean operation of two masks.Type: GrantFiled: February 7, 2013Date of Patent: July 15, 2014Assignee: Intel CorporationInventors: Shem Ogadhoh, Raguraman Venkatesan, Kevin J. Hooker, Sungwon Kim, Bin Hu, Vivek Singh, Bikram Baidya, Prasad Narendra Atkar, Seongtae Jeong
-
Publication number: 20130149638Abstract: Described herein is mask design and modeling for a set of masks to be successively imaged to print a composite pattern on a substrate, such as a semiconductor wafer. Further described herein is a method of double patterning a substrate with the set of masks. Also described herein is a method of correcting a drawn pattern of one of the mask levels based on a predicted pattern contour of the other of the mask levels. Also described herein is a method of modeling a resist profile contour for a mask level in which photoresist is applied onto a inhomogeneous substrate, as well as method of predicting a resist profile of a Boolean operation of two masks.Type: ApplicationFiled: February 7, 2013Publication date: June 13, 2013Inventors: Shem OGADHOH, Raguraman VENKATESAN, Kevin J. HOOKER, Sungwon KIM, Bin HU, Vivek SINGH, Bikram BAIDYA, Prasad NARENDRA ATKAR, Seongtae JEONG
-
Patent number: 8404403Abstract: Described herein is mask design and modeling for a set of masks to be successively imaged to print a composite pattern on a substrate, such as a semiconductor wafer. Further described herein is a method of double patterning a substrate with the set of masks. Also described herein is a method of correcting a drawn pattern of one of the mask levels based on a predicted pattern contour of the other of the mask levels. Also described herein is a method of modeling a resist profile contour for a mask level in which photoresist is applied onto a inhomogeneous substrate, as well as method of predicting a resist profile of a Boolean operation of two masks.Type: GrantFiled: June 25, 2010Date of Patent: March 26, 2013Assignee: Intel CorporationInventors: Shem Ogadhoh, Raguraman Venkatesan, Kevin J. Hooker, Sungwon Kim, Bin Hu, Vivek Singh, Bikram Baidya, Prasad Narendra Atkar, Seongtae Jeong