Patents by Inventor Shen Xu

Shen Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240280613
    Abstract: An inductor current estimation method for a DC-DC switching power supply using a voltage sampling module, a data conversion module, a switching signal counting module, an inductor voltage calculation module and a digital filter module, comprising: processing an input voltage and an output voltage by the voltage sampling module and the data conversion module to obtain a converted input voltage and a converted output voltage which have a same number of bits; comparing a node voltage with a reference voltage, and then obtaining a duty cycle by the switching signal counting module; and then, outputting an average voltage of two terminals of an inductor and a parasitic resistor by the inductor voltage calculation module, and finally, obtaining an estimated inductor current by the digital filter module.
    Type: Application
    Filed: August 3, 2022
    Publication date: August 22, 2024
    Applicant: SOUTHEAST UNIVERSITY
    Inventors: Shen XU, Chenxi YANG, Yijie QIAN, Yujie LIU, Limin YU, Weifeng SUN, Longxing SHI
  • Publication number: 20240266943
    Abstract: A multi-phase high-precision current sharing control method applied to constant on-time control is provided, wherein a current difference between continuously sampled current of each line and mean current is processed by a PI compensation module and a low-pass filter module to obtain on-time regulation data. A high bit of the regulation data controls the value of counter reference Vref in an on-time control module, and a low bit controls the length of an enabled delay line in a delay line module. The counter timing control of the on-time control module is combined with the delay line timing control of the delay line module to improve the control precision of a DPWM. The method takes COT control of a Buck converter as a typical application. Compared with a multi-phase COT controller without a current-sharing mechanism, the method can improve the stability and reliability of the system.
    Type: Application
    Filed: April 21, 2024
    Publication date: August 8, 2024
    Applicant: SOUTHEAST UNIVERSITY
    Inventors: Shen XU, Haiqing ZHANG, Yujie LIU, Ruizhi WANG, Yuan GAO, Yongjia LI, Weifeng SUN, Longxing SHI
  • Patent number: 12046990
    Abstract: A multi-phase high-precision current sharing control method applied to constant on-time control is provided, wherein a current difference between continuously sampled current of each line and mean current is processed by a PI compensation module and a low-pass filter module to obtain on-time regulation data. A high bit of the regulation data controls the value of counter reference Vref in an on-time control module, and a low bit controls the length of an enabled delay line in a delay line module. The counter timing control of the on-time control module is combined with the delay line timing control of the delay line module to improve the control precision of a DPWM. The method takes COT control of a Buck converter as a typical application. Compared with a multi-phase COT controller without a current-sharing mechanism, the method can improve the stability and reliability of the system.
    Type: Grant
    Filed: April 21, 2024
    Date of Patent: July 23, 2024
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Shen Xu, Haiqing Zhang, Yujie Liu, Ruizhi Wang, Yuan Gao, Yongjia Li, Weifeng Sun, Longxing Shi
  • Patent number: 11984813
    Abstract: A synchronous rectification control system and method for a quasi-resonant flyback converter are provided. The control system includes a switching transistor voltage sampling circuit configured to sample an output terminal voltage of the switching transistor to obtain a sampled voltage of the switching transistor; a sampling calculation module configured to obtain a dead-time based on the sampled voltage of the switching transistor and a preset relationship, the preset relationship being a correspondence between the duration of the sampled voltage of the switching transistor being below a first preset value and the dead-time during an on-time of a switching cycle of the switching transistor, the dead-time being a time from when the switching transistor is turned off to when the synchronous rectification transistor is turned on; and a control module configured to receive the dead-time and control switching of the synchronous rectification transistor based on the dead-time.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: May 14, 2024
    Assignees: SOUTHEAST UNIVERSITY, CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shen Xu, Siyu Zhao, Congming Qi, Sen Zhang, Xiaoyu Shi, Weifeng Sun, Longxing Shi
  • Publication number: 20240079591
    Abstract: An electrode material for an energy storage device including a covalent organic framework includes a plurality of aromatic moieties each linked by at least one thioether linkage. An anode including said electrode material, and an energy storage device having said anode.
    Type: Application
    Filed: January 18, 2023
    Publication date: March 7, 2024
    Inventors: Qichun Zhang, Chun-Sing Lee, Chenchen Wang, Shen Xu
  • Publication number: 20240063390
    Abstract: A covalent organic framework includes a plurality of aromatic moieties each linked by at least one thioether linkage, and its preparation method. An energy storage device includes a cell with an electrode including the covalent organic framework.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 22, 2024
    Inventors: Qichun Zhang, Chun Sing Lee, Shen Xu, Chenchen Wang
  • Patent number: 11777416
    Abstract: A flyback converter and an output voltage acquisition method therefor and apparatus thereof, wherein the output voltage acquisition method comprises the following steps: acquiring the reference output voltage of a flyback converter; sampling the current output voltage of the flyback converter within a reset time of each switching period among M continuous switching periods of the flyback converter, wherein M is a positive integer; and according to the reference output voltage and the current output voltage, sampling a dichotomy to successively approximate the current output voltage until the M switching periods are finished, and acquiring the output voltage of the flyback converter.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 3, 2023
    Assignees: SOUTHEAST UNIVERSITY, CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Weifeng Sun, Huaxin Zhang, Hu Zhang, Menglin Yu, Siyu Zhao, Shen Xu, Longxing Shi
  • Patent number: 11770076
    Abstract: Disclosed are a system and method for controlling an active clamp flyback (ACF) converter. The system includes: a drive module configured to control turning-on or turning-off of a main switching transistor SL and a clamp switching transistor SH; a main switching transistor voltage sampling circuit configured to sample a voltage drop between an input terminal and an output terminal of the main switching transistor SL; a first comparator connected to the main switching transistor voltage sampling circuit and configured to determine whether a sampled first sampling voltage is a positive voltage or a negative voltage; and a dead time calculation module configured to adjust, according to an output of the first comparator and a main switching transistor control signal DUTYL of a current cycle, a clamp switching transistor control signal DUTYH of next cycle outputted by the drive module.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: September 26, 2023
    Assignees: SOUTHEAST UNIVERSITY, CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shen Xu, Minggang Chen, Wanqing Yang, Dejin Wang, Rui Jiang, Weifeng Sun, Longxing Shi
  • Publication number: 20230091061
    Abstract: The present disclosure is applicable to the technical field of metering and distributing of an adhesive dispensing machine, and provides a machine learning-based flexible intelligent adhesive dispensing method.
    Type: Application
    Filed: April 29, 2022
    Publication date: March 23, 2023
    Inventors: Shen XU, Xiaohong YANG, Gongquan LIU, Zheyu LI, Ling WEI, Yong XIAO, Yong HUO, Feng WEI, Feng WANG, Songqiao ZHANG, Pengcheng DU, Fangfang JIANG, Fan JIANG, Long ZHANG, Baiteng GUO, Shuai LIU, Zihao ZHAO, Yirong MAO
  • Patent number: 11557959
    Abstract: An automatic dead zone time optimization system in a primary-side regulation flyback power supply continuous conduction mode (CCM), including a closed loop formed by a control system, including a single output digital to analog converter (DAC) midpoint sampling module, a digital control module, a current detection module, a dead zone time calculation module and a pulse-width modulation (PWM) driving module, and a controlled synchronous rectification primary-side regulation flyback converter. A primary-side current is sampled using a DAC Sampling mechanism to calculate a secondary-side average current, so as to obtain a primary-side average current and a secondary-side average current, in the case of CCM. A secondary-side current is input into the dead zone time calculation module to obtain a reasonable dead zone time; and the PWM driving module is jointly controlled by a primary-side regulation loop and the obtained dead zone time.
    Type: Grant
    Filed: December 29, 2018
    Date of Patent: January 17, 2023
    Assignees: CSMC TECHNOLOGIES FAB2 CO., LTD., SOUTHEAST UNIVERSITY
    Inventors: Shen Xu, Minggang Chen, Hao Wang, Jinyu Xiao, Wei Su, Weifeng Sun, Longxing Shi
  • Patent number: 11394306
    Abstract: Provided is a dynamic control method that turns off a primary-side switching transistor when an output voltage exceeds an upper limit, and control the switching of a secondary-side synchronous rectification transistor with a fixed cycle and a fixed duty cycle. During the time that the synchronous rectification transistor is turned on, the energy of a load capacitor at the output end is extracted to the primary side, which causes the output voltage to drop rapidly and the overshoot voltage to decrease greatly.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: July 19, 2022
    Assignees: CSMC TECHNOLOGIES FAB2 CO., LTD., SOUTHEAST UNIVERSITY
    Inventors: Shen Xu, Wei Wang, Feng Lin, Boyong He, Wei Su, Weifeng Sun, Longxing Shi
  • Patent number: 11323039
    Abstract: A method for improving the conversion efficiency of a CCM mode of a flyback resonant switch power supply, comprising: presetting a critical value Tset, calculating a time interval Ttap between adjacent zero points in the current connection time, outputting a shutdown signal at the zero points, and comparing the time interval Ttap with the preset critical value Tset; when Ttap>Tset, controlling the current shutdown time to be less than the shutdown time of the preceding cycle and outputting a start signal; when Ttap=0, controlling the current shutdown time to be greater than the shutdown time of the preceding cycle and outputting a start signal; and when 0<Ttap<=Tset, controlling the current shutdown time to be the same as the shutdown time of the preceding switch cycle and outputting a start signal.
    Type: Grant
    Filed: December 29, 2018
    Date of Patent: May 3, 2022
    Inventors: Weifeng Sun, Rongrong Tao, Hao Wang, Jinyu Xiao, Wei Su, Shen Xu, Longxing Shi
  • Publication number: 20220085727
    Abstract: A flyback converter and an output voltage acquisition method therefor and apparatus thereof, wherein the output voltage acquisition method comprises the following steps: acquiring the reference output voltage of a flyback converter; sampling the current output voltage of the flyback converter within a reset time of each switching period among M continuous switching periods of the flyback converter, wherein M is a positive integer; and according to the reference output voltage and the current output voltage, sampling a dichotomy to successively approximate the current output voltage until the M switching periods are finished, and acquiring the output voltage of the flyback converter.
    Type: Application
    Filed: December 19, 2019
    Publication date: March 17, 2022
    Inventors: Weifeng SUN, Huaxin ZHANG, Hu ZHANG, Menglin YU, Siyu ZHAO, Shen XU, Longxing SHI
  • Publication number: 20220069718
    Abstract: Disclosed are a system and method for controlling an active clamp flyback (ACF) converter. The system includes: a drive module configured to control turning-on or turning-off of a main switching transistor SL and a clamp switching transistor SH; a main switching transistor voltage sampling circuit configured to sample a voltage drop between an input terminal and an output terminal of the main switching transistor SL; a first comparator connected to the main switching transistor voltage sampling circuit and configured to determine whether a sampled first sampling voltage is a positive voltage or a negative voltage; and a dead time calculation module configured to adjust, according to an output of the first comparator and a main switching transistor control signal DUTYL of a current cycle, a clamp switching transistor control signal DUTYH of next cycle outputted by the drive module.
    Type: Application
    Filed: June 19, 2020
    Publication date: March 3, 2022
    Inventors: Shen XU, Minggang CHEN, Wanqing YANG, Dejin WANG, Rui JIANG, Weifeng SUN, Longxing SHI
  • Publication number: 20220052613
    Abstract: A synchronous rectification control system and method for a quasi-resonant flyback converter are provided. The control system includes a switching transistor voltage sampling circuit configured to sample an output terminal voltage of the switching transistor to obtain a sampled voltage of the switching transistor; a sampling calculation module configured to obtain a dead-time based on the sampled voltage of the switching transistor and a preset relationship, the preset relationship being a correspondence between the duration of the sampled voltage of the switching transistor being below a first preset value and the dead-time during an on-time of a switching cycle of the switching transistor, the dead-time being a time from when the switching transistor is turned off to when the synchronous rectification transistor is turned on; and a control module configured to receive the dead-time and control switching of the synchronous rectification transistor based on the dead-time.
    Type: Application
    Filed: May 15, 2020
    Publication date: February 17, 2022
    Inventors: Shen XU, Siyu ZHAO, Congming QI, Sen ZHANG, Xiaoyu SHI, Weifeng SUN, Longxing SHI
  • Publication number: 20200343810
    Abstract: An automatic dead zone time optimization system in a primary-side regulation flyback power supply CCM mode, comprising a closed loop formed by a control system, consisting of a single output DAC midpoint sampling module, a digital control module, a current detection module, a dead zone time calculation module and a PWM driving module, and a controlled synchronous rectification primary-side regulation flyback converter. By means of a DAC Sampling mechanism, a primary-side current is sampled to calculate a secondary-side average current, so as to obtain a primary-side average current Imid_p and a secondary-side average current Is(tmid) in the case of CCM; a secondary-side current is input into the dead zone time calculation module to obtain a reasonable dead zone time td; and finally, the PWM driving module is jointly controlled by a primary-side regulation loop and the obtained dead zone time td.
    Type: Application
    Filed: December 29, 2018
    Publication date: October 29, 2020
    Inventors: Shen XU, Minggang CHEN, Hao WANG, Jinyu XIAO, Wei SU, Weifeng SUN, Longxing SHI
  • Publication number: 20200336070
    Abstract: A method for improving the conversion efficiency of a CCM mode of a flyback resonant switch power supply, comprising: presetting a threshold value Tset, calculating a time interval Ttap between adjacent zero points during a present conducting time, outputting a switch-off signal at zero points, and comparing the time interval Ttap with the preset threshold value Tset; when Ttap>Tset, he present switch-off time to be less than a switch-off time of a previous cycle, outputting a switch-on signal; when Ttap=0, controlling the present switch-off time to be greater than a switch-off time of the previous cycle, outputting a switch-on signal; and when 0<Ttap<=Tset, controlling the present switch-off time to be the same as the switch-off time of the previous switch cycle, outputting a switch-on signal.
    Type: Application
    Filed: December 29, 2018
    Publication date: October 22, 2020
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., SOUTHEAST UNIVERSITY
    Inventors: Weifeng SUN, Rongrong TAO, Hao WANG, Jinyu XIAO, Wei SU, Shen XU, Longxing SHI
  • Publication number: 20200328689
    Abstract: Provided is a dynamic control method that turns off a primary-side switching transistor when an output voltage exceeds an upper limit, and control the switching of a secondary-side synchronous rectification transistor with a fixed cycle and a fixed duty cycle. During the time that the synchronous rectification transistor is turned on, the energy of a load capacitor at the output end is extracted to the primary side, which causes the output voltage to drop rapidly and the overshoot voltage to decrease greatly.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Shen XU, Wei WANG, Feng LIN, Boyong HE, Wei SU, Weifeng SUN, Longxing SHI
  • Patent number: 10340906
    Abstract: Parasitic high-voltage diodes implemented by integration technology in a high-voltage level shift circuit are used for charging a bootstrap capacitor CB, wherein a power supply end of the high voltage level shift circuit is a high-side floating power supply VB, and a reference ground is a floating voltage PGD that is controlled by a bootstrap control circuit. A first parasitic diode DB1 and a second parasitic diode DB2 are provided between the VB and the PGD. The bootstrap control circuit is controlled by a high-side signal and a low-side signal.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 2, 2019
    Assignees: SOUTHEAST UNIVERSITY, SOUTHEAST UNIVERSITY-WUXI INTEGRATED CIRCUIT TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Weifeng Sun, Yunwu Zhang, Kuo Yu, Jing Zhu, Shen Xu, Qinsong Qian, Siyang Liu, Shengli Lu, Longxing Shi
  • Patent number: 10097077
    Abstract: A control method for improving dynamic response of switch power is based on a closed-loop control system comprising a sampling module, a dynamic control module, an error calculation module, a PID module, a mode control module, and a PWM module. The sampling module samples an output voltage Vo, and the dynamic control module compares the output voltage Vo with a set maximum voltage Vomax, a set minimum voltage Vomin, and a reference voltage Vref, so as to determine whether to adopt a dynamic mode. In the dynamic mode, when the output voltage Vo changes greatly, the output voltage Vo is rapidly restored to a stable voltage by inputting large power or small power.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 9, 2018
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Shen Xu, Chong Wang, Xianjun Fan, Weifeng Sun, Shengli Lu, Longxing Shi