Patents by Inventor Sheng-Fu Hsu

Sheng-Fu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250246903
    Abstract: The present disclosure provides a semiconductor device, which includes a control circuit, a driving circuit, a voltage pull-up device, and a discharging circuit. The control circuit is coupled between a first terminal and a second terminal of the integrated circuit, and provides a first voltage at a first node. The driving circuit is electrically connected to the control circuit at the first node, and provides a trigger signal at a second node in response to an electrostatic discharge (ESD) event occurring at the first terminal or the second terminal. The voltage pull-up device is coupled between the first terminal and the first node, and configured to pull up the first voltage at the first node in response to the ESD event occurring at the first terminal. The discharging circuit is electrically connected to the second node, and coupled between the first terminal and the second terminal.
    Type: Application
    Filed: January 25, 2024
    Publication date: July 31, 2025
    Inventors: SHENG-FU HSU, SHIH-FAN CHEN, LIN-YU HUANG
  • Patent number: 12364023
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a first semiconductor device and second semiconductor device disposed on a semiconductor substrate. The first semiconductor device comprises a first gate structure, a first source region, and a first drain region. The first source and drain regions and are disposed in a first well region. The second semiconductor device comprises a second gate structure, a second source region, and a second drain region. The second source and drain regions are disposed in a second well region. The first and second well regions comprise a first doping type. The first well region is laterally offset from the second well region by a first distance. A third well region is disposed in the semiconductor substrate and laterally between the first and second well regions. The third well region comprises a second doping type opposite the first doping type.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: July 15, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Ching Huang, Hao-Hua Hsu, Sheng-Fu Hsu
  • Publication number: 20250167140
    Abstract: A semiconductor device includes an integrated circuit and one or more guard rings around the integrated circuit in a top view of the semiconductor device. At least one guard ring of the one or more guard rings includes an active region in the substrate, a first plurality of elongated conductive structures extending in a first direction in the top view of the semiconductor device and arranged in a second direction in the top view of the semiconductor device, and a second plurality of elongated conductive structures extending in the second direction and arranged in the first direction. The combination of the first and second pluralities of elongated conductive structures forms a conductive grid above the active region, and provides increased coverage of the surface area of the active region relative to including only the first plurality of elongated conductive structures or only the second plurality of elongated conductive structures.
    Type: Application
    Filed: February 15, 2024
    Publication date: May 22, 2025
    Inventors: Lin-Yu HUANG, Shih-Fan CHEN, Sheng-Fu HSU
  • Publication number: 20250169191
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Application
    Filed: January 21, 2025
    Publication date: May 22, 2025
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Patent number: 12237323
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Grant
    Filed: January 5, 2024
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Publication number: 20250063824
    Abstract: This disclosure is directed to a circuit that includes a substrate, a target device on the substrate, and an electrostatic discharge (ESD) device electrically coupled to the target device. The ESD device includes an ESD detection circuit electrically coupled to a first reference voltage supply and a second reference voltage supply, an inverter circuit electrically coupled to the ESD detection circuit and configured to trigger in response to an ESD event on the first or second reference voltage supply, a rectifier circuit electrically coupled to the inverter circuit and configured to rectify a current discharged from the inverter circuit, and a transistor electrically coupled to the rectifier circuit and configured to discharge a remaining current passing through the rectifier circuit.
    Type: Application
    Filed: August 16, 2023
    Publication date: February 20, 2025
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lin-Yu HUANG, Shih-Fan CHEN, Sheng-Fu HSU, Yi-An LAI, Chan-Hong CHERN, Cheng-Hsiang HSIEH
  • Publication number: 20250015071
    Abstract: Providing a resistor between a gate of a target device (e.g., a gallium nitride (GaN) high-electron-mobility transistor device) and a clamp circuit improves electrostatic discharge (ESD) protection between an input/output (IO) and the target device. For example, the resistor may result in ESD protection between the IO and a source of the target device and between the IO and a drain of the target device may be at least 2 kilovolts under the human body model. Because ESD protection is improved, chances of burn out in the target device are reduced. Additionally, larger currents may be applied in the clamp circuit without risk of ESD.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 9, 2025
    Inventors: Sheng-Fu HSU, Shih-Fan CHEN, Lin-Yu HUANG
  • Publication number: 20250015073
    Abstract: A semiconductor device that includes an n-buried layer, a p-well region over the n-buried layer, an n-channel MOSFET that includes an n-drain region, and a vertical NPN BJT having a collector that is the n-drain region and a base that is the p-well region. The p-well region is floating.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 9, 2025
    Inventors: Ken-Hao FAN, Yu-Ti Su, Sheng-Fu Hsu, Hao-Hua Hsu
  • Publication number: 20240429310
    Abstract: A semiconductor device may include a electrostatic discharge (ESD) protection circuit and a high voltage ESD triggering circuit that is configured to trigger ESD protection for high voltage circuits of the semiconductor device. The high voltage ESD triggering circuit may be implemented by one or more of the example implementations of high voltage ESD triggering circuits described herein. The example implementations of high voltage ESD triggering circuits described herein are capable of handle high voltages of the high voltage circuits included in the semiconductor device. This reduces the likelihood of and/or prevents premature triggering of ESD protection during normal operation for these high voltage circuits, and enables the high voltage circuits to be protected from high voltage ESD events.
    Type: Application
    Filed: June 21, 2023
    Publication date: December 26, 2024
    Inventors: Sheng-Fu HSU, Shih-Fan CHEN, Chen-Yi LEE, Pin-Chen CHEN, Lin-Yu HUANG
  • Publication number: 20240371858
    Abstract: The ability of a grounded gate NMOS (ggNMOS) device to withstand and protect against human body model (HBM) electrostatic discharge (ESD) events is greatly increased by resistance balancing straps. The resistance balancing straps are areas of high resistance formed in the substrate between an active area that includes a MOSFET of the ggNMOS device and a bulk ring that surrounds the active area. A Vss rail is coupled to the substrate beneath the MOSFET through the bulk ring. The substrate beneath the MOSFET provides base regions for parasitic transistors that switch on for the ggNMOS device to operate. The straps inhibit low resistance pathways between the base regions and the bulk ring and prevent a large portion of the ggNMOS device from being switched off while a remaining portion of the ggNMOS device remains switched on. The strap may be divided into segments inserted at strategic locations.
    Type: Application
    Filed: July 19, 2024
    Publication date: November 7, 2024
    Inventors: Hsiao-Ching Huang, Sheng-Fu Hsu, Hao-Hua Hsu, Pin-Chen Chen, Lin-Yu Huang, Yu-Chang Jong
  • Patent number: 12132042
    Abstract: The ability of a grounded gate NMOS (ggNMOS) device to withstand and protect against human body model (HBM) electrostatic discharge (ESD) events is greatly increased by resistance balancing straps. The resistance balancing straps are areas of high resistance formed in the substrate between an active area that includes a MOSFET of the ggNMOS device and a bulk ring that surrounds the active area. A Vss rail is coupled to the substrate beneath the MOSFET through the bulk ring. The substrate beneath the MOSFET provides base regions for parasitic transistors that switch on for the ggNMOS device to operate. The straps inhibit low resistance pathways between the base regions and the bulk ring and prevent a large portion of the ggNMOS device from being switched off while a remaining portion of the ggNMOS device remains switched on. The strap may be divided into segments inserted at strategic locations.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: October 29, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Ching Huang, Sheng-Fu Hsu, Hao-Hua Hsu, Pin-Chen Chen, Lin-Yu Huang, Yu-Chang Jong
  • Publication number: 20240234410
    Abstract: A semiconductor ESD protection device includes a pair of source regions, a pair of gate structures, a drain region, a plurality of first conductive contacts, a plurality of second conductive contacts, a plurality of third conductive contacts, and a dummy structure. The pair of gate structures are disposed between the pair of source regions and extend along a direction. The drain region is disposed between the pair of gate structures. Each of the first conductive contacts is disposed on one of the pair of source regions and is arranged along the direction. Each of the plurality of second conductive contacts is disposed on one of the pair of gate structures. The plurality of third conductive contacts are disposed on the drain region and arranged along the direction. The dummy structure is disposed over the drain region and between the gate structures and between the third conductive contacts.
    Type: Application
    Filed: January 9, 2023
    Publication date: July 11, 2024
    Inventors: SHENG-FU HSU, CHEN-YI LEE, LIN-YU HUANG, SHIH-FAN CHEN
  • Publication number: 20240153943
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 9, 2024
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Patent number: 11916060
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Publication number: 20240030215
    Abstract: The ability of a grounded gate NMOS (ggNMOS) device to withstand and protect against human body model (HBM) electrostatic discharge (ESD) events is greatly increased by resistance balancing straps. The resistance balancing straps are areas of high resistance formed in the substrate between an active area that includes a MOSFET of the ggNMOS device and a bulk ring that surrounds the active area. A Vss rail is coupled to the substrate beneath the MOSFET through the bulk ring. The substrate beneath the MOSFET provides base regions for parasitic transistors that switch on for the ggNMOS device to operate. The straps inhibit low resistance pathways between the base regions and the bulk ring and prevent a large portion of the ggNMOS device from being switched off while a remaining portion of the ggNMOS device remains switched on. The strap may be divided into segments inserted at strategic locations.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Inventors: Hsiao-Ching Huang, Sheng-Fu Hsu, Hao-Hua Hsu, Pin-Chen Chen, Lin-Yu Huang, Yu-Chang Jong
  • Publication number: 20230395592
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a first semiconductor device and second semiconductor device disposed on a semiconductor substrate. The first semiconductor device comprises a first gate structure, a first source region, and a first drain region. The first source and drain regions and are disposed in a first well region. The second semiconductor device comprises a second gate structure, a second source region, and a second drain region. The second source and drain regions are disposed in a second well region. The first and second well regions comprise a first doping type. The first well region is laterally offset from the second well region by a first distance. A third well region is disposed in the semiconductor substrate and laterally between the first and second well regions. The third well region comprises a second doping type opposite the first doping type.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 7, 2023
    Inventors: Hsiao-Ching Huang, Hao-Hua Hsu, Sheng-Fu Hsu
  • Patent number: 11804482
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate of a first type, a first doped region embedded within the substrate and having a first portion and a second portion, and a first gate electrode disposed above the substrate. The semiconductor device further comprises a well region of a second type and embedded within the substrate. The well region is in contact with the second portion of the first doped region.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Sheng-Fu Hsu, Hsiao-Ching Huang
  • Patent number: 11715734
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: August 1, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai
  • Patent number: 11688804
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device has a source region and a drain region in a substrate, a gate structure and a metallic line. The source region surrounds the drain region in the substrate. The gate structure is disposed on the substrate, and disposed between the source region and the drain region. The gate structure surrounds the drain region. The metallic line is located above the source and drain regions and the gate structure and electrically connected to the drain region or the source region. The source region includes a doped region having a break region located between two opposite ends of the doped region. The metallic line extends from the drain region, across the gate structure and across the break region and beyond the source region.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Cheng Chiu, Tien-Sheng Lin, Sheng-Fu Hsu, Chen-Yi Lee, Chiu-Hua Chung
  • Publication number: 20220336440
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 20, 2022
    Inventors: Sheng-Fu Hsu, Ta-Yuan Kung, Chen-Liang Chu, Chih-Chung Tsai