Patents by Inventor Sheng-Fu Wu

Sheng-Fu Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935728
    Abstract: In order to reduce the occurrence of current alarms in a semiconductor etching or deposition process, a controller determines an offset in relative positions of a cover ring and a shield over a wafer within a vacuum chamber. The controller provides a position alarm and/or adjusts the position of the cover ring or shield when the offset is greater than a predetermined value or outside a range of acceptable values.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Cheng Wu, Sheng-Ying Wu, Ming-Hsien Lin, Chun Fu Chen
  • Publication number: 20240085634
    Abstract: An optical fiber transmission device includes a substrate, a photonic integrated circuit, and an optical fiber assembly. The photonic integrated circuit is disposed on an area of the substrate. The substrate has a protruding structure at an interface with an edge of the photonic integrated circuit. The optical fiber assembly includes an optical fiber and a ferrule that sleeves the optical fiber. The protruding structure of the substrate is configured to abut against the ferrule to limit the position of the optical fiber assembly in a vertical direction of the substrate, such that the protruding structure is a stopper for the optical fiber assembly in the vertical direction.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Applicant: AuthenX Inc.
    Inventors: Chun-Chiang YEN, Po-Kuan SHEN, Sheng-Fu LIN, Yi-Ting LU, Jun-Rong CHEN, Jenq-Yang CHANG, Mao-Jen WU
  • Publication number: 20240089000
    Abstract: An optical fiber network device includes a fiber and a photonic integrated circuit. Fiber receives a first optical signal and transmits a second optical signal. A first wavelength of first optical signal is different from a second wavelength of second optical signal. Photonic integrated circuit includes a laser chip, a photodetector, a wavelength division multiplexing coupler, a first optical modulation element and a second optical modulation element. Laser chip is disposed on photonic integrated circuit, and is configured to generate first optical signal. Photodetector detects second optical signal. Wavelength division multiplexing coupler is configured to couple first optical signal to fiber, and receives second optical signal. First optical modulation element is coupled to wavelength division multiplexing coupler and laser chip, and is configured to modulate first optical signal.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Applicant: AuthenX Inc.
    Inventors: Sheng-Fu LIN, Po-Kuan SHEN, Chun-Chiang YEN, Yi-Ting LU, Jun-Rong CHEN, Jenq-Yang CHANG, Mao-Jen WU
  • Patent number: 7830449
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: November 9, 2010
    Inventors: Qinggang Zhou, Clyde H. Nagakura, Sheng-Fu Wu, Andrew K. Chan
  • Publication number: 20070177056
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Application
    Filed: April 3, 2007
    Publication date: August 2, 2007
    Inventors: Qinggang Zhou, Clyde Nagakura, Sheng-Fu Wu, Andrew Chan
  • Patent number: 7218355
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: May 15, 2007
    Inventors: Qinggang Zhou, Clyde H. Nagakura, Sheng-Fu Wu, Andrew K. Chan
  • Patent number: 7202908
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: April 10, 2007
    Inventors: Qinggang Zhou, Clyde H. Nagakura, Sheng-Fu Wu, Andrew K. Chan
  • Publication number: 20040160528
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Application
    Filed: November 25, 2003
    Publication date: August 19, 2004
    Applicant: VIma Microsystems Corporation
    Inventors: Qinggang Zhou, Clyde H. Nagakura, Sheng-Fu Wu, Andrew K. Chan
  • Publication number: 20040160526
    Abstract: A display processor integrated circuit includes a display processor portion and an on-chip programmable logic portion. The programmable logic portion can be configured to implement custom video and/or image enhancement functions. The display processor portion performs block-based motion detection. If no motion is detected for a given block of pixels, then interline gaps in the block are filled using temporal interpolation. If motion is detected, then interline gaps are filled using spatial interpolation. To maintain accuracy without unduly increasing computational complexity, a less complex high angle spatial interpolation method is employed where a low angle tilt condition is not detected. A more computationally intensive low angle spatial interpolation method can therefore be employed in low angle tilt conditions. Integrated circuit cost is reduced by employing pipelining to write parts of segment buffers at the same time that other parts are being read to perform the interpolation process.
    Type: Application
    Filed: November 25, 2003
    Publication date: August 19, 2004
    Applicant: VIma Microsystems Corporation
    Inventors: Qinggang Zhou, Clyde H. Nagakura, Sheng-Fu Wu, Andrew K. Chan
  • Patent number: 5927434
    Abstract: An extensible ladder includes an upper frame, an up and down transmitting unit and a first and a second extensible frame. The first and the second extensible frame each have a plurality of pairs of crisscrossing rods pivotally connected with each other. Plural ladder steps and connecting rods are pivotally connected between the first and the second extensible frame. The connecting rods are pivotally connected to guide blocks, which have a vertical threaded hole for each of two threaded rods of the up and down transmitting unit to fit in and engage. Then each threaded rod has a clockwise threaded portion and counterclockwise threaded portion engaging the vertical threaded holes of the guide blocks. When an active rod with two worm sections is rotated by two worm gears combined with splines with an upper spline shaft portion of the two threaded rods, the active rod rotates the threaded rods, forcing the two extensible frames to extend down or shrink up.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: July 27, 1999
    Inventor: Sheng-Fu Wu